The Korean Society for Journalism & Communication (KSJCS)
[ Article ]
Korean Journal of Journalism & Communication Studies - Vol. 68, No. 4, pp.75-118
ISSN: 2586-7369 (Online)
Print publication date 31 Aug 2024
Received 05 Apr 2024 Accepted 29 Jul 2024 Revised 31 Jul 2024
DOI: https://doi.org/10.20879/kjjcs.2024.68.4.003

인공지능 이슈에 대한 뉴스 프레임이 이용자의 정서와 행동 의향에 미치는 영향

장미경** ; 민영***
**고려대학교 일반대학원 과학기술학협동과정 과학언론학 박사 rosem@korea.ac.kr
***고려대학교 미디어학부 교수 ymin@korea.ac.kr
Effects of News Framing of Artificial Intelligence Issues on Users’ Emotions and Behavioral Intentions
Mikyung Chang** ; Young Min***
**Ph.D., Department of Science and Technology Studies, Graduate School, Korea University rosem@korea.ac.kr
***Professor, School of Media & Communication, Korea University ymin@korea.ac.kr

초록

이 연구는 글로벌 이슈로 주목받는 인공지능(AI) 기술 관련 언론 보도 프레임의 특성과 효과를 탐색했다. 이를 위해 <연구 1>은 ‘가치’와 ‘귀인(인간의 AI 통제 가능성)’을 기준으로 국내 언론의 AI 관련 보도 프레임을 분석했으며, <연구 2>는 이 결과를 토대로 2×2 집단 간 요인설계의 온라인 실험을 진행하여 보도 프레임이 이용자의 정서와 행동 의향에 미치는 영향을 분석했다. 주요 연구 결과는 다음과 같다. 첫째, 국내 언론은 AI 이슈에 대해 사회 발전과 혜택에 주안점을 둔 ‘발전 가치’ 프레임을 더 많이 활용했고, AI 기술에 대한 인간의 통제 가능성을 강조하는 프레임을 구성했다. 둘째, AI 관련 보도 프레임은 차별화된 정서를 유발했는데, ‘발전 가치’ 프레임은 ‘희망’과 ‘긍지’를, ‘위기 가치’ 프레임은 ‘분노’를 불러왔다. 셋째, 보도 프레임이 유발한 정서는 다양한 행동 의향으로 이어졌다. 구체적으로, ‘희망’과 ‘긍지’는 ‘정보탐색’ 행동 의향을, ‘분노’는 ‘비판’ 행동 의향을 유발하는 데 유의미한 영향을 미쳤다. 넷째, 행동 의향에 대한 언론 프레임 효과에서 정서가 유의미한 매개 역할을 할 수 있음을 확인했다. 이 연구는 과학 커뮤니케이션 현상 연구에서 프레이밍 이론의 적절성을 제시했으며, 다중연구방법을 통해 AI 보도의 특성과 효과를 정밀하게 탐색하는 데에 기여했다.

Abstract

The purpose of this study is to identify social and policy implications by exploring the characteristics and effects of news frames related to artificial intelligence (AI) technologies, which have emerged as a global issue. To achieve this goal, <Study 1> conducted manual and computer-assisted content analyses of the AI-related news frames of major domestic news outlets in terms of value frames (progress versus crisis) and attributional frames (high versus low controllability). In <Study 2>, an online survey experiment was conducted using a 2×2 factorial design to explore the effects of news framing on users’ emotions and behavioral intentions.

The key findings are as follows. First, the news media tended to use the ‘progress value’ frames more frequently than the ‘crisis value’ frames, focusing on the social developments and benefits AI technologies could bring. In terms of controllability, the news media more often emphasized sufficient levels of human control over the technologies. Second, the news frames related to AI technologies elicited differentiated emotional responses; progress value frames evoked positive emotions such as hope and pride, whereas crisis value frames strengthened negative emotions such as anger. The controllability frames did not significantly moderate the effects of value frames on emotions.

Third, the emotions elicited by news frames were further associated with various behavioral intentions. Specifically, the emotions of hope and pride enhanced the intention to engage in information-seeking activities to acquire AI-related knowledge and information. The feeling of anger, on the contrary, significantly strengthened users’ intention for critical activities to express their opinion on the side effects of AI technologies, urging the attention of the media, government, and academia. Additionally, when users felt anger, their intention to engage in information-seeking behavior decreases while their intention to avoid or reject the use of AI products and services increases. Fourth, it was consequently confirmed that emotions significantly mediated the relationship between news frames and behavioral intentions, demonstrating that how individuals feel about AI news affects their subsequent actions.

The combination of content analysis and experimental design enhanced the study’s validity and reliability, providing a comprehensive understanding of how news framing influences the public’s emotional responses and behavior regarding AI. The study underscores the importance of emotions in the acceptance of new technologies and validates the use of framing theory in science communication research to explore and understand public discourse and reactions to critical science issues. This study also highlights the need for balanced media coverage and the creation of public forums for discussion and policy development concerning new technologies. Overall, the study calls for greater attention to emotional responses in technology acceptance and the need for responsible media practices to foster informed public discourse on AI.

Keywords:

Artificial Intelligence (AI), Value Frames, Attributional Frames, Emotions, Science Communication

키워드:

인공지능(AI), 가치 프레임, 귀인 프레임, 정서, 과학 커뮤니케이션

Acknowledgments

This manuscript was modified from the first author’s unpublished doctoral dissertation at the Department of Science and Technology Studies, Graduate School of Korea University (February 2024)(이 연구는 제1저자의 고려대학교 일반대학원 과학기술학협동과정(과학언론학 전공) 박사학위논문(2024년 2월)을 기반으로 수정된 논문입니다).

References

  • Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138-52160. [https://doi.org/10.1109/ACCESS.2018.2870052]
  • Ahn, S. W., & Lee, W. S. (2023). The relationship between the news frame of regulatory focus, risk perception, and preventive behavior. Korean Journal of Communication and Information, 120, 86-107. [ https://doi.org/10.46407/kjci.2023.08.120.86 ]
    안서원‧이완수 (2023). 뉴스의 조절 초점 프레임과 백신 접종에 대한 위험지각, 그리고 예방 행동 간의 관계: 뉴스 강조 프레임은 코로나 19 백신 접종 의향을 어떻게 견인하는가?. <한국언론정보학보>, 통권 제120호, 86-107.
  • Andreu-Perez, J., Deligianni, F., Ravi, D., & Yang, G.-Z. (2018). Artificial intelligence and robotics. arXiv preprint arXiv:1803.10813. [https://doi.org/10.31256/WP2017.1]
  • Arnold, M. B. (1960). Emotion and personality. New York, NY: Columbia University Press.
  • Averill, J. R., Catlin, G., & Chon, K. K. (1990). Rules of hope. New York, NY: Springer-Verlag Publisher. [https://doi.org/10.1007/978-1-4613-9674-1]
  • Baker, R. S., & Hawn, A. (2022). Algorithmic bias in education. International Journal of Artificial Intelligence in Education, 32, 1052-1092. [https://doi.org/10.1007/s40593-021-00285-9]
  • Barrat, J. (2013). Artificial intelligence and the end of the human era: Our final invention. New York, NY: Thomas Dunne Books.
  • Bélisle-Pipon, J. C., Monteferrante, E., Roy, M. C., & Couture, V. (2022). Artificial intelligence ethics has a black box problem. AI & Society, 38, 1507-1522. [https://doi.org/10.1007/s00146-021-01380-0]
  • Berger, P., & Luckmann, T. (1966). The social construction of reality: A treatise in the sociology of knowledge. New York, NY: Anchor Books.
  • Bigman, Y. E., Wilson, D., Arnestad, M. N., Waytz, A., & Gray, K. (2023). Algorithmic discrimination causes less moral outrage than human discrimination. Journal of Experimental Psychology: General, 152(1), 4-27. [https://doi.org/10.1037/xge0001250]
  • Boezeman, E. J., & Ellemers, N. (2007). Volunteering for charity: Pride, respect, and the commitment of volunteers. Journal of Applied Psychology, 92(3), 771-785. [https://doi.org/10.1037/0021-9010.92.3.771]
  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. New York, NY: Oxford University Press.
  • Brewer, N. T., Weinstein, N. D., Cuite, C. L., & Herrington, J. E. (2004). Risk perceptions and their relation to risk behavior. Annals of Behavioral Medicine, 27(2), 125-130. [https://doi.org/10.1207/s15324796abm2702_7]
  • Brewer, P. R. (2001). Value words and lizard brains: Do citizens deliberate about appeals to their core values? Political Psychology, 22(1), 45-64. [https://doi.org/10.1111/0162-895X.00225]
  • Brewer, P. R. (2002). Framing, value words, and citizens’ explanations of their issue opinions. Political Communication, 19(3), 303-316. [https://doi.org/10.1080/01957470290055510]
  • Brewer, P. R. (2003). Values, political knowledge, and public opinion about gay rights: A framing-based account. Public Opinion Quarterly, 67(2), 173-201. [https://doi.org/10.1086/374397]
  • Brokensha, S. (2020). Friend or foe? How online news outlets in South Africa frame artificial intelligence. Ensovoort: Journal of Cultural Studies, 41(7), 2.
  • Cave, S., Craig, C., Dihal, K., Dillon, S., Montgomery, J., Singler, B., & Taylor, L. (2018). Portrayals and perceptions of AI and why they matter. The Royal Society. [https://doi.org/10.17863/CAM.34502]
  • Cho, I. S. (2016). News framing effect of tobacco lawsuits coverage. Doctoral dissertation, Kookmin University, Seoul, Korea.
    조인숙 (2016). <담배소송 보도에 관한 뉴스 프레이밍 효과: 인지 평가 및 정서 반응을 중심으로>. 국민대학교 대학원 박사학위 논문.
  • Choi, J. H., & So, J. Y. (2021). The effects of COVID-19 news frames on support for punishment policy in individuals. Korean Journal of Journalism and Communication Studies, 65(4), 70-105. [ https://doi.org/10.20879/kjjcs.2021.65.4.002 ]
    최종혁‧소지연 (2021). 코로나 19 뉴스 프레임이 개인에 대한 처벌 정책 지지에 미치는 영향: 책임 인식과 분노의 매개효과. <한국언론학보>, 제65권 4호, 70-105.
  • Choi, M. S., & Son, J. Y. (2023, February 22). “Data tasks that took 5 hours now done in just 1 minute”: Workers utilizing ChatGPT. Dong-A Ilbo. Retrieved 6/22/23 from https://www.donga.com/ news/Society/article/all/20230222/118012815/1
    최미송‧손준영 (2023, 2, 22). “5시간 걸리던 데이터 업무 1분만에”… 챗GPT 활용하는 직장인들. <동아일보>.
  • Chong, D., & Druckman, J. N. (2007). A theory of framing and opinion formation in competitive elite environments. Journal of Communication, 57(1), 99-118. [https://doi.org/10.1111/j.1460-2466.2006.00331.x]
  • Chuan, C.-H., Tsai, W.-H. S., & Cho, S. Y. (2019). Framing artificial intelligence in American newspapers. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI. [https://doi.org/10.1145/3306618.3314285]
  • Conover, P. J., & Feldman, S. (1986). Emotional reactions to the economy: I’m mad as hell and I’m not going to take it anymore. American Journal of Political Science, 30(1), 50-78. [https://doi.org/10.2307/2111294]
  • Cools, H., Van Gorp, B., & Opgenhaffen, M. (2024). Where exactly between utopia and dystopia? A framing analysis of AI and automation in US newspapers. Journalism, 25(1), 3-21. [https://doi.org/10.1177/14648849221122647]
  • Cui, D., & Wu, F. (2021). The influence of media use on public perceptions of artificial intelligence in China: Evidence from an online survey. Information Development, 37(1), 45-57. [https://doi.org/10.1177/0266666919893411]
  • Dressel, J., & Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. Science Advances, 4(1). [https://doi.org/10.1126/sciadv.aao5580]
  • Eisenberg, N., & Miller, P. A. (1987). The relation of empathy to prosocial and related behaviors. Psychological Bulletin, 101(1), 91. [https://doi.org/10.1037/0033-2909.101.1.91]
  • Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm. Journal of Communication, 43(4), 51-58. [https://doi.org/10.1111/j.1460-2466.1993.tb01304.x]
  • Fast, E., & Horvitz, E. (2017). Long-term trends in the public perception of artificial intelligence. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA. [https://doi.org/10.1609/aaai.v31i1.10635]
  • Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Rossi, F. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach, 28(4), 689-707. [https://doi.org/10.1007/s11023-018-9482-5]
  • Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.
  • Future of Life Institute. (2023, March 22). Pause giant AI experiments: An open letter. Retrieved 11/16/23 from https://futureoflife.org/open-letter/pause-giant-ai-experiments, /
  • Garvey, S. C. (2021). Unsavory medicine for technological civilization: Introducing ‘Artificial Intelligence & its Discontents’. Interdisciplinary Science Reviews, 46(1-2), 1-18. [https://doi.org/10.1080/03080188.2020.1840820]
  • Geisslinger, M., Poszler, F., Betz, J., Lütge, C., & Lienkamp, M. (2021). Autonomous driving ethics: From trolley problem to ethics of risk. Philosophy & Technology, 34(4), 1033-1055. [https://doi.org/10.1007/s13347-021-00449-4]
  • Greenaway, K. H., Cichocka, A., van Veelen, R., Likki, T., & Branscombe, N. R. (2016). Feeling hopeful inspires support for social change. Political Psychology, 37(1), 89–107. [https://doi.org/10.1111/pops.12225]
  • Hartley, C. A., & Phelps, E. A. (2012). Anxiety and decision-making. Biological Psychiatry, 72(2), 113-118. [https://doi.org/10.1016/j.biopsych.2011.12.027]
  • Heo, S. J., & Min, Y. (2010). The press coverage of the cyber defamation laws: Framing effects of core values and attributional patterns. Korean Journal of Communication and Information, 52, 48-68.
    허석재‧민영 (2010). 사이버모욕죄 보도의 프레이밍 효과: 핵심 가치와 귀인 양식을 중심으로. <한국언론정보학보>, 통권 52호, 48-68.
  • Hoeken, H., & Hustinx, L. (2007). The impact of exemplars on responsibility stereotypes in fund-raising letters. Communication Research, 34(6), 596-617. [https://doi.org/10.1177/0093650207307898]
  • Iyengar, S. (1991). Is anyone responsible?: How television frames political issues. Chicago, IL: University of Chicago Press. [https://doi.org/10.7208/chicago/9780226388533.001.0001]
  • Izard, C. E. (1993). Four systems for emotion activation: Cognitive and noncognitive processes. Psychological Review, 100(1), 68-90. [https://doi.org/10.1037/0033-295X.100.1.68]
  • Jeong, J. G. (2022). Normative study on AI language model. Doctoral dissertation, Seoul National University, Seoul, Korea.
    정종구 (2022). <인공지능 언어모델에 대한 규범적 연구: 일반 대화형 챗봇에 대한 실증연구를 중심으로>. 서울대학교 대학원 박사학위 논문.
  • Jeong, J. S. (2012). A study on effect of news frame using elaboration likelihood model. Doctoral dissertation, Ewha Womans University, Seoul, Korea.
    정재선 (2012). <정교화 가능성 모델을 이용한 뉴스 프레임 효과 연구: 국내 암 관련 보도를 중심으로>. 이화여자대학교 대학원 박사학위 논문.
  • Jo, K. W. (2023, May 19). Facing threats from generative AI, G7 to include ‘regulatory agreement’ in joint declaration. Hankyoreh. Retrieved 6/22/23 from https://www.hani.co.kr/arti/international/international_general/1092413.html
    조기원 (2023, 5, 19). 생성형 AI 위협 마주한 G7, 공동선언에 ‘규제 합의’ 담는다. <한겨레>.
  • Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. [https://doi.org/10.1038/s42256-019-0088-2]
  • Jones-Jang, S. M., & Park, Y. J. (2023). How do people react to AI failure? Automation bias, algorithmic aversion, and perceived controllability. Journal of Computer-Mediated Communication, 28(1), 1-8. [https://doi.org/10.1093/jcmc/zmac029]
  • Kang, B. Y. (2018). A study of the effects of cancer-related news frames on cognitive attitude, emotional attitude, and preventive behavioral intention. Doctoral dissertation, Sungkyunkwan University, Seoul, Korea.
    강보영 (2018). <암 관련 뉴스프레임이 인지적, 정서적 태도와 예방행동의도에 미치는 영향 연구: 해석수준이론 적용을 중심으로>. 성균관대학교 일반대학원 박사학위 논문.
  • Kelley, H. H., & Michela, J. L. (1980). Attribution theory and research. Annual Review of Psychology, 31(1), 457-501. [https://doi.org/10.1146/annurev.ps.31.020180.002325]
  • Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [https://doi.org/10.1016/j.tele.2022.101925]
  • Kim, C. S., & Kim, K. K. (2015). An analysis of frame in conservative presses and progressive presses with emphasis on the reported articles of cyber smears. The Journal of Social Science, 22(4), 279-310.
    김춘식‧김관규 (2015). 사이버 명예훼손에 대한 보수언론과 진보언론의 프레임 분석. <사회과학연구>, 제22권 4호, 279-310.
  • Kim, H. J., & Cameron, G. T. (2011). Emotions matter in crisis: The role of anger and sadness in the publics’ response to crisis news framing and corporate crisis response. Communication Research, 38(6), 826-855. [https://doi.org/10.1177/0093650210385813]
  • Kim, H. K., & Niederdeppe, J. (2013). The role of emotional response during an H1N1 influenza pandemic on a college campus. Journal of Public Relations Research, 25(1), 30-50. [https://doi.org/10.1080/1062726X.2013.739100]
  • Kim, S. H. (2015). Who is responsible for a social problem? News framing and attribution of responsibility. Journalism & Mass Communication Quarterly, 92(3), 554-558. [https://doi.org/10.1177/1077699015591956]
  • Kim, S. J. (2015). A study on situational health communication message model corresponding to health issue type. Doctoral dissertation, Ewha Womans University, Seoul, Korea.
    김수진 (2015). <건강이슈유형에 따른 상황적 헬스커뮤니케이션 메시지 모델 연구: 귀인이론과 감정의 인지평가이론을 중심으로>. 이화여자대학교 대학원 박사학위 논문.
  • Köstler, L., & Ossewaarde, R. (2022). The making of AI society: AI futures frames in German political and media discourses. AI & Society, 37(1), 249-263. [https://doi.org/10.1007/s00146-021-01161-9]
  • Kühne, R., & Schemer, C. (2013). The emotional effects of news frames on information processing and opinion formation. Communication Research, 42(3), 387-407. [https://doi.org/10.1177/0093650213514599]
  • Lazarus, R. S. (1966). Psychological stress and the coping process. New York, NY: McGraw-Hill.
  • Lazarus, R. S. (1991). Emotion and adaptation. New York, NY: Oxford University Press. [https://doi.org/10.1093/oso/9780195069945.001.0001]
  • Lee, C.-J., Scheufele, D. A., & Lewenstein, B. V. (2005). Public attitudes toward emerging technologies: Examining the interactive effects of cognitions and affect on public attitudes toward nanotechnology. Science Communication, 27(2), 240-267. [https://doi.org/10.1177/1075547005281474]
  • Lee, H. I. (2023, June 21). “AI mimicking voices and faces, increasing risk of voice phishing”. Chosun Ilbo. Retrieved 6/22/23 from https://www.chosun.com/economy/tech_it/2023/06/21/X3OQZQ5RIVDTRMJR5LBTAIZCGQ/?utm_source=naver&utm_medium=referral&utm_campaign=naver-news
    이해인 (2013, 6, 21). “인공지능이 목소리·얼굴 모방, 보이스피싱 위험”. <조선일보>.
  • Lerner, J. S., & Keltner, D. (2001). Fear, anger, and risk. Journal of Personality and Social Psychology, 81(1), 146-159. [https://doi.org/10.1037/0022-3514.81.1.146]
  • Lim, I. J. (2020). A study on the extended framing effects in reporting disaster. Doctoral dissertation, Sogang University, Seoul, Korea.
    임인재 (2020). 재난 보도의 프레이밍 효과에 대한 확장 연구: 감정 중심의 커뮤니케이션 모델. 서강대학교 대학원 박사학위 논문.
  • Lim, I. J., & Kum, H. J. (2024). Climate change news frames and policy support. Korean Journal of Broadcasting & Telecommunications Research, 125, 104-143. [임인재‧금희조 (2024). 기후변화 뉴스 프레임이 정책 지지에 미치는 영향: 개별 감정과 위험 인식의 매개 경로 중심. <방송통신연구>, 통권 제125호. 104-143. [https://doi.org/10.22876/kjbtr.2023..125.004]
  • Marcus, G. E., & MacKuen, M. B. (1993). Anxiety, enthusiasm, and the vote: The emotional underpinnings of learning and involvement during presidential campaigns. American Political Science Review, 87(3), 672-685. [https://doi.org/10.2307/2938743]
  • Marinier, R., & Laird, J. E. (2006). A cognitive architecture theory of comprehension and appraisal.
  • McCarthy, J. (1956). The inversion of functions defined by turing machines. Automata studies, Princeton, NJ, US: Princeton University Press: 177-182. [https://doi.org/10.1515/9781400882618-009]
  • Michael, M., & Lupton, D. (2016). Toward a manifesto for the ‘public understanding of big data’. Public Understanding of Science, 25(1), 104-116. [https://doi.org/10.1177/0963662515609005]
  • Ministry of Science and ICT. (2023, April 14). A plan to strengthen the competitiveness of Hyper scale AI. South Korean Government Policy Briefing. Retrieved 6/14/23 from https://www.korea.kr/news/policyNewsView.do?newsId=148913885
    과학기술정보통신부 (2023, 4, 14). 초거대 AI 경쟁력 강화에 3901억 투입…“디지털 경제 가속화”. <대한민국 정책브리핑>.
  • Myrick, J. G., & Willoughby, J. F. (2019). Educated but anxious: How emotional states and education levels combine to influence online health information seeking. Health Informatics Journal, 25(3), 649-660. [https://doi.org/10.1177/1460458217719561]
  • Na, E. K., Song, H. J., Kim, H. S., & Lee, J. W. (2008). News framing effects on discrete emotional responses. Korean Journal of Journalism and Communication Studies, 52(2), 378-406.
    나은경‧송현주‧김현석‧이준웅 (2008). 정서의 프레이밍: 경제 뉴스 보도 기사의 정서 반응 유발 효과. <한국언론학보>, 제52권 2호, 378-406.
  • Na, H. J., & Min, Y. (2010). Framing effects of symbolic labeling: The Taean vs Samsung-Hebei Spirit oil spill, Korean Journal of Journalism and Communication Studies, 54(4), 209-232.
    나현정‧민영 (2010). 상징적 이름짓기의 프레이밍 효과: ‘태안’ vs ‘삼성-허베이스피릿호’ 기름유출사고. <한국언론학보>, 제54권 4호, 209-232.
  • Nabi, R. L., Walter, N., Oshidary, N., Endacott, C. G., Love-Nichols, J., Lew, Z. J., & Aune, A. (2020). Can emotions capture the elusive gain-loss framing effect? A meta-analysis. Communication Research, 47(8), 1107–1130. [https://doi.org/10.1177/0093650219861256]
  • National Assembly Library (2023). Hyper scale AI. 105, 19-169.
    국회도서관 (2023). 초거대 AI. 통권 105호, 19-169.
  • Nelson, T. E., Oxley, Z. M., & Clawson, R. A. (1997). Toward a psychology of framing effects. Political Behavior, 19(3), 221-246. [https://doi.org/10.1023/A:1024834831093]
  • Nisbet, M. C. (2005). The competition for worldviews: Values, information, and public support for stem cell research. International Journal of Public Opinion Research, 17(1), 90-112. [https://doi.org/10.1093/ijpor/edh058]
  • Obozintsev, L. (2018). From Skynet to Siri: An exploration of the nature and effects of media coverage of artificial intelligence. University of Delaware, Newark, DE.
  • Ortony, A., Clore, G. L., & Collins, A. (1988). The cognitive structure of emotions. Cambridge, UK: Cambridge University Press. [https://doi.org/10.1017/CBO9780511571299]
  • Park, W. I. (2024, January 16). CES 2024 ‘Megatrend’ recap… everything AI. The Milk. Retrieved 2/14/24 from https://contents.premium.naver.com/themiilk/business/contents/240116174009499du
    박원익 (2024, 1, 16). CES 2024 ‘메가트렌드’ 리캡... 모든 것이 AI. <더밀크>.
  • Park, W. I. (2024, Feb 29). MWC dominated AI… Pocket Concierge·TelcoLLM·Hologram. The Milk. Retrieved 2/16/24 from https://contents.premium.naver.com/themiilk/business/contents/240229174306969iy
    박원익 (2024, 2, 29). MWC 지배한 AI... 포켓 컨시어지·텔코LLM·홀로그램. <더밀크>.
  • Pentzold, C., Brantner, C., & Fölsche, L. (2019). Imagining big data: Illustrations of ‘big data’ in US news articles, 2010–2016. New Media & Society, 21(1), 139-167. [https://doi.org/10.1177/1461444818791326]
  • Peters, E. M., Burraston, B., & Mertz, C. (2004). An emotion‐based model of risk perception and stigma susceptibility: Cognitive appraisals of emotion, affective reactivity, worldviews, and risk perceptions in the generation of technological stigma. Risk Analysis: An International Journal, 24(5), 1349-1367. [https://doi.org/10.1111/j.0272-4332.2004.00531.x]
  • Peters, H. P. (2013). Gap between science and media revisited: Scientists as public communicators. Proceedings of the National Academy of Sciences, 110(supplement_3), 14102-14109. [https://doi.org/10.1073/pnas.1212745110]
  • Potter, W. J., & Riddle, K. (2007). A content analysis of the media effects literature. Journalism & Mass Communication Quarterly, 84(1), 90-104. [https://doi.org/10.1177/107769900708400107]
  • Price, V., Tewksbury, D., & Powers, E. (1997). Switching trains of thought: The impact of news frames on readers’ cognitive responses. Communication Research, 24(5), 481-506. [https://doi.org/10.1177/009365097024005002]
  • Reyna, C., Tucker, A., Korfmacher, W., & Henry, P. (2005). Searching for common ground between supporters and opponents of affirmative action. Political Psychology, 26(5), 667-682. [https://doi.org/10.1111/j.1467-9221.2005.00438.x]
  • Roberts, W., & Strayer, J. (1996). Empathy, emotional expressiveness, and prosocial behavior. Child Development, 67(2), 449-470. [https://doi.org/10.2307/1131826]
  • Russell, S. (2022). Artificial intelligence and the problem of control. In H. Werthner, E. Prem, E. A. Lee, & C. Ghezzi (Eds.), Perspectives on digital humanism (pp. 19-24). Cham, Switzerland: Springer.
  • Scherer, K. R., Schorr, A., & Johnstone, T. (2001). Appraisal processes in emotion: Theory, methods, research. New York, NY: Oxford University Press. [https://doi.org/10.1093/oso/9780195130072.001.0001]
  • Scheufele, D. A., & Lewenstein, B. V. (2005). The public and nanotechnology: How citizens make sense of emerging technologies. Journal of Nanoparticle Research, 7, 659-667. [https://doi.org/10.1007/s11051-005-7526-2]
  • Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2004). Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk and rationality. Risk Analysis, 24(2). 311-322. [https://doi.org/10.1111/j.0272-4332.2004.00433.x]
  • Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion. Journal of Personality and Social Psychology, 48(4), 813-838. [https://doi.org/10.1037/0022-3514.48.4.813]
  • Snyder, C. R. (2002). Hope theory: Rainbows in the mind. Psychological Inquiry, 13(4), 249-275. [https://doi.org/10.1207/S15327965PLI1304_01]
  • Son, Y. J., & Hong, J. H. (2019). Newspaper frame analysis on the nuclear crisis in Korean peninsula: Using the Kyung Hyang, Han Kyeo Rae, Chosun and Dongah Platforms. Journal of Political Science and Communication, 22(3), 175-210. [ https://doi.org/10.15617/psc.2019.10.31.3.175 ]
    손영준‧홍주현 (2019). 한반도 핵 위기에 대한 신문 사설 프레임 비교 분석: 경향·한겨레·조선·동아 4개 매체를 대상으로. <정치정보연구>, 제22권 3호, 175-210.
  • Stadlthanner, K. A., Andreu, L., Ribeiro, M. A., Font, X., & Mattila, A. S. (2022). The effects of message framing in CSR advertising on consumers’ emotions, attitudes, and behavioral intentions. Journal of Hospitality Marketing & Management, 31(7), 777-796. [https://doi.org/10.1080/19368623.2022.2065399]
  • Sun, M. S. (2023, May 31). “We must prevent human extinction due to AI”. Kyunghyang Shinmun. Retrieved 6/25/23 from https://www.khan.co.kr/world/world-general/article/202305312225005
    선명수 (2023, 5, 31). “AI로 인한 인류 멸종 막아야”. <경향신문>.
  • Tracy, J. L., & Robins, R. W. (2007). The psychological structure of pride: A tale of two facets. Journal of Personality and Social Psychology, 92(3), 506-525. [https://doi.org/10.1037/0022-3514.92.3.506]
  • Vaccari, C., & Chadwick, A. (2020). Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Social Media + Society, 6(1). [https://doi.org/10.1177/2056305120903408]
  • Van Doorn, J., Zeelenberg, M., & Breugelmans, S. M. (2014). Anger and prosocial behavior. Emotion Review, 6(3), 261-268. [https://doi.org/10.1177/1754073914523794]
  • Valentino, N. A., Hutchings, V. L., Banks, A. J., & Davis, A. K. (2008). Is a worried citizen a good citizen? Emotions, political information seeking, and learning via the internet. Political Psychology, 29(2), 247-273. [https://doi.org/10.1111/j.1467-9221.2008.00625.x]
  • Van Doorn, J., Zeelenberg, M., & Breugelmans, S. M. (2014). Anger and prosocial behavior. Emotion Review, 6(3), 261-268. [https://doi.org/10.1177/1754073914523794]
  • Weiner, B. (1986). Attribution, emotion, and action. In R. M. Sorrentino & E. T. Higgins (Eds.), Handbook of motivation and cognition: Foundations of social behavior (pp. 281-312). New York, NY: Guilford Press.
  • Weiner, B. (2006). Social motivation, justice, and the moral emotions: An attributional approach. London, UK: Psychology Press. [https://doi.org/10.4324/9781410615749]
  • Wlodarczyk, A., Basabe, N., Páez, D., & Zumeta, L. (2017). Hope and anger as mediators between collective action frames and participation in collective mobilization: The Case of 15-M. Journal of Social and Political Psychology, 5(1), 200-223. [https://doi.org/10.5964/jspp.v5i1.471]
  • Wolf, M. J., Miller, K., & Grodzinsky, F. S. (2017). Why we should have seen that coming: Comments on Microsoft's tay experiment, and wider implications. ACM SIGMA Computers and Society, 47(3), 54-64. [https://doi.org/10.1145/3144592.3144598]
  • Yampolskiy, R. V. (2015). Artificial superintelligence: A futuristic approach. Boca Raton, FL: CRC Press. [https://doi.org/10.1201/b18612]
  • Yang, J. Z., & Chu, H. (2018). Who is afraid of the Ebola outbreak? The influence of discrete emotions on risk perception. Journal of Risk Research, 21(7), 834-853. [https://doi.org/10.1080/13669877.2016.1247378]
  • Yang, Z. J., & Kahlor, L. (2013). What, me worry? The role of affect in information seeking and avoidance. Science Communication, 35(2), 189-212. [https://doi.org/10.1177/1075547012441873]
  • Zednik, C. (2021). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34(2), 265-288. [https://doi.org/10.1007/s13347-019-00382-7]
  • Zhang, B., & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. SSRN Electronic Journal, 3312874. [https://doi.org/10.2139/ssrn.3312874]