The Korean Society for Journalism & Communication (KSJCS)
[ Article ]
Korean Journal of Journalism & Communication Studies - Vol. 65, No. 3, pp.80-121
ISSN: 2586-7369 (Online)
Print publication date 30 Jun 2021
Received 07 Apr 2021 Accepted 04 Jun 2021 Revised 07 Jun 2021
DOI: https://doi.org/10.20879/kjjcs.2021.65.3.003

지도기계학습을 이용한 트위터 뉴스의 프레임 특성 분석 : 코로나19 보도 프레임의 자동화 판별 방법을 중심으로

이주연** ; 이신행***
**중앙대학교 미디어커뮤니케이션학과 석사과정 ljy9712@cau.ac.kr
***중앙대학교 미디어커뮤니케이션학과 조교수 shinlee@cau.ac.kr
Using Supervised Machine Learning to Uncover Framing Features in Twitter News : An Automated Frame Analysis of COVID-19 Coverage
Ju Yeon Lee** ; Shin Haeng Lee***
**Master’s Student, Department of Media and Communication, Chung-Ang University ljy9712@cau.ac.kr
***Assistant Professor, Department of Media and Communication, Chung-Ang University, corresponding author shinlee@cau.ac.kr

초록

본 연구는 지도기계학습으로 코로나19 관련 언론보도를 건강신념모델에 기초한 심각성, 취약성, 이득, 장애의 프레임으로 분석했다. 특히, 기사의 헤드라인과 리드에서 확인된 각 뉴스 프레임의 언어적 특성으로 언론사의 트위터 게시물에서 드러나는 프레임을 판별하여 소셜미디어가 언론보도에 미치는 영향을 추론했다. 분석대상은 국내 주요 종합일간지인 조선일보, 중앙일보, 경향신문, 한겨레가 코로나19와 관련해 2020년 1월 20일부터 2021년 1월 19일까지 보도한 기사와 트윗이다. 지도기계학습을 이용한 자동화 방식의 프레임 판별을 위해 임의로 추출된 기사 표본 2000건에 대한 모델 정확성을 검증했고 이를 2000건의 트윗 표본에 적용하여 예측 정확성을 평가하고 언어적 특성의 차이를 살폈다. 그 결과, 심각성과 취약성의 지각된 위협 프레임이 이득과 장애의 행동적 평가 프레임에 비해 언론보도에서 부각되고 있어 코로나19에 대한 위험 인식 측면이 감염예방행동의 비용과 편익보다 강조되고 있음을 발견했다. 그러나 심각성과 장애 프레임은 취약성과 이득 프레임에 비해 기계학습모델의 예측 정확성이 저하된 점이 두드러져 프레임의 언어적 특성이 상대적으로 불규칙적이고 다양함을 포착했다. 더 나아가, 트위터에서는 이용자의 참여에 기반한 소셜미디어의 뉴스 확산 원리에 따라 프레임이 보다 유연하고 차별적인 방식으로 구성되어 개인적 차원에서의 감정적인 표현이 프레임에 자주 드러나고 있음을 확인했다. 본 연구는 기계학습을 활용해 대단위의 뉴스기사로부터 프레임을 분석하여 인간 코더의 주관적 해석이 아닌 투명하고 재현 가능한 자동화 방식으로 프레임 언어의 특징을 도출했다는 의의를 가진다.

Abstract

Using the supervised machine learning model, this study examined the coverage of COVID-19 by news frames—severity, susceptibility, benefits, and barriers—drawing upon the health belief model. In particular, linguistic features of each frame were automatically derived from the headline and lead of news and they were applied to explore framing features of Twitter messages posted by the major newspapers in South Korea. The data included news articles and tweets about COVID-19 from Chosun Ilbo, JoongAng Ilbo, Kyunghyang Shinmun, and Hankyoreh. To automatically identify news frames, we employed support vector machine(SVM) and naïve Bayes(NB) algorithms by evaluating the accuracy of classifying each frame in 2,000 randomly sampled articles. Furthermore, the optimal classification algorithm was applied to 2,000 randomly sampled tweets to evaluate the predication accuracy for each frame and reveal distinctive linguistic features of each frame on Twitter. Findings showed that perceived threat frames of severity and susceptibility were emphasized in the coverage to a greater extent than behavioral evaluation frames of benefits and barriers, highlighting the risk-aware aspects of Covid-19 prioritized over the costs and benefits of preventive behavior. But we also found that severity and barriers frames were not constructed by consistent and distinct features, given the reduced accuracy of models compared to susceptibility and benefits frames. Furthermore, news frames on Twitter were constructed in a more flexible and discriminatory manner insofar as the logic of social media engages more personalized and emotional use of language in the content. This study sets out a methodology whereby machine learning is employed to code news frames in large-scale news coverage of COVID-19 and identify the features of framing language in an automated, transparent, and reproducible way.

Keywords:

Automated Frame Analysis, Supervised Machine Learning, Twitter News, COVID-19, Health Belief Model

키워드:

자동화 프레임 분석, 지도기계학습, 트위터 뉴스, 코로나19, 건강신념모델

Acknowledgments

This research was supported by the Chung-Ang University Research Scholarship Grants in 2020. (이 논문은 2020년도 중앙대학교 연구장학기금 지원에 의한 것임)

References

  • Al-Rawi, A. (2019). Viral news on social media. Digital Journalism, 7(1), 63-79. [https://doi.org/10.1080/21670811.2017.1387062]
  • An, S., & Lee, H. (2016). Media guidelines for suicide prevention: Content analysis of news stories on depression according to health belief model. Health and Social Welfare Review, 36(1), 529-564. [https://doi.org/10.15709/hswr.2016.36.1.529]
  • Andreeva, V. A., Unger, J. B., & Pentz, M. A. (2007). Breast cancer among immigrants: A systematic review and new research directions. Journal of Immigrant and Minority Health, 9(4), 307-322. [https://doi.org/10.1007/s10903-007-9037-y]
  • Andrew, B. C. (2007). Media-generated shortcuts: Do newspaper headlines present another roadblock for low-information rationality? Harvard International Journal of Press/Politics, 12(2), 24-43. [https://doi.org/10.1177/1081180X07299795]
  • Apuke, O. D., & Omar, B. (2021). Fake news and COVID-19: Modelling the predictors of fake news sharing among social media users. Telematics and Informatics, 56, 101475. [https://doi.org/10.1016/j.tele.2020.101475]
  • Bae, B.-G., Lee, B.-R., & Choi, S.-H. (2015, June). The analysis of association between social bigdata and earthquake. Paper presented at the annual meeting of the Korean Institute of Information Scientists and Engineers, Jeju: Jeju National University.
  • Becker, M. H. (1974). The health belief model and sick role behavior. Health Education Monographs, 2(4), 409-419. [https://doi.org/10.1177/109019817400200407]
  • Bennett, W. L., & Segerberg, A. (2013). The logic of connective action: Digital media and the personalization of contentious politics. New York, NY: Cambridge University Press. [https://doi.org/10.1017/CBO9781139198752]
  • Berger, J., & Milkman, K. (2010). Social transmission, emotion, and the virality of online content. Wharton Research Paper, 106, 1-52.
  • Burscher, B., Odijk, D., Vliegenthart, R., De Rijke, M., & De Vreese, C. H. (2014). Teaching the computer to code frames in news: Comparing two supervised machine learning approaches to frame analysis. Communication Methods and Measures, 8(3), 190-206. [https://doi.org/10.1080/19312458.2014.937527]
  • Carpenter, C. J. (2010). A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Communication, 25(8), 661-669. [https://doi.org/10.1080/10410236.2010.521906]
  • Champion, V. L., & Skinner, C. S. (2008). The health belief model. In K. Glanz, B. K. Rimer, & K. Viswanath (Eds.), Health Behavior and Health Education: Theory, Research, and Practice (4th ed.) (p. 45-65). San Francisco, CA: Jossey-Bass.
  • Cho, H. L., & Jung, M. (2019). An exploratory content analysis of media coverage and framing on naturalistic medicine. Health and Social Welfare Review, 39(2), 332–357. [https://doi.org/10.15709/hswr.2019.39.2.332]
  • Cho, M., & Lee, S. H. (2021). Analyzing news frames in the coverage of COVID-19: Data-driven approach to frame analysis. Journal of Speech, Media and Communication Research, 20(1), 65-107. [https://doi.org/10.51652/ksmca.2021.20.1.3]
  • Choi, J. W. (2012). A study on improving the delivery system of emergency disaster broadcast using new media. Broadcasting and Media Magazine, 17(3), 24-39.
  • Choi, S.-H. (2020). Preventive measures during outbreak of coronavirus disease 2019. Korean Journal of Medicine, 95(3), 134-140. [https://doi.org/10.3904/kjm.2020.95.3.134]
  • Clarke, J. N., McLellan, L., & Hoffman-Goetz, L. (2006). The portrayal of HIV/AIDS in two popular African American magazines. Journal of Health Communication, 11(5), 495-507. [https://doi.org/10.1080/10810730600752001]
  • Coleman, R., & Thorson, E. (2002). The effects of news stories that put crime and violence into context: Testing the public health model of reporting. Journal of Health Communication, 7(5), 401-425. [https://doi.org/10.1080/10810730290001783]
  • De Grove, F., Boghe, K., & De Marez, L. (2020). (What) Can journalism studies learn from supervised machine learning? Journalism Studies, 21(7), 912-927. [https://doi.org/10.1080/1461670X.2020.1743737]
  • Edy, J. A., & Meirick, P. C. (2007). Wanted, dead or alive: Media frames, frame adoption, and support for the war in Afghanistan. Journal of Communication, 57(1), 119-141. [https://doi.org/10.1111/j.1460-2466.2006.00332.x]
  • Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm. Journal of Communication, 43(4), 51-58. [https://doi.org/10.1111/j.1460-2466.1993.tb01304.x]
  • Entwistle, V. (1995). Reporting research in medical journals and newspapers. BMJ, 310(6984), 920-923. [https://doi.org/10.1136/bmj.310.6984.920]
  • Gamson, W. A., & Modigliani, A. (1989). Media discourse and public opinion on nuclear power: A constructionist approach. American Journal of Sociology, 95(1), 1-37. [https://doi.org/10.1086/229213]
  • García-Perdomo, V., Salaverría, R., Kilgo, D. K., & Harlow, S. (2018). To share or not to share: The influence of news values and topics on popular social media content in the United States, Brazil, and Argentina. Journalism Studies, 19(8), 1180-1201. [https://doi.org/10.1080/1461670X.2016.1265896]
  • Goffman, E. (1974). Frame analysis: An essay on the organization of experience. New York, NY: Harper & Row.
  • Ha, J.-H, & Rim, H. (2020). Does audience optimism transcend the severity of news frame during health pandemic outbreaks? Journal of Communication Science, 20(1), 191-229. [https://doi.org/10.14696/jcs.2020.03.20.1.191]
  • Han, K. H. (2011). The impact of health belief components on the effectiveness of women’s cancer prevention campaigns: A cross-national examination towards Korean and Japanese women. The Korean Journal of Advertising and Public Relations, 13(2), 377-413.
  • Harcup, T., & O’neill, D. (2017). What is news? News values revisited (again). Journalism Studies, 18(12), 1470-1488. [https://doi.org/10.1080/1461670X.2016.1150193]
  • Hermida, A., Fletcher, F., Korell, D., & Logan, D. (2012). Share, like, recommend: Decoding the social media news consumer. Journalism Studies, 13(5-6), 815-824. [https://doi.org/10.1080/1461670X.2012.664430]
  • Hyman, R. B., Baker, S., Ephraim, R., Moadel, A., & Philip, J. (1994). Health belief model variables as predictors of screening mammography utilization. Journal of Behavioral Medicine, 17(4), 391-406. [https://doi.org/10.1007/BF01858010]
  • Janz, N. K., & Becker, M. H. (1984). The health belief model: A decade later. Health Education Quarterly, 11(1), 1-47. [https://doi.org/10.1177/109019818401100101]
  • Jenkins, H. (2006). Fans, bloggers, and gamers: Exploring participatory culture. New York, NY: New York University Press.
  • Jo, S. E., Shin, H. C., Yoo, S. W., & Roh, H. S. (2012). The study of factors affecting tuberculosis preventive behavior intentions: An extension of HBM with mediating effects of self-efficacy and fear. Journal of Public Relations Research, 16(1), 148-177. [https://doi.org/10.15814/jpr.2012.16.1.148]
  • Jung, J., & Lee, D. (2012). A study on frame effect in elaboration likelihood perspective: Focusing on the cancer related news. Korean Journal of Journalism & Communication Studies, 56(6), 278-309.
  • Jung, T., & Brann, M. (2014). Analyzing the extended parallel process model and health belief model constructs in texting while driving: News coverage in leading US news media outlets. International Journal of Health Promotion and Education, 52(4), 210-221. [https://doi.org/10.1080/14635240.2014.906967]
  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291. [https://doi.org/10.2307/1914185]
  • Kananovich, V. (2018). Framing the taxation-democratization link: An automated content analysis of cross-national newspaper data. The International Journal of Press/Politics, 23(2), 247-267. [https://doi.org/10.1177/1940161218771893]
  • Kim, E., Yu, H., & Han, K. (2019). Analysis of frame types in the income-led growth news reports. Korean Journal of Communication & Information, 96, 7-36. [https://doi.org/10.46407/kjci.2019.08.96.7]
  • Kim, H. J. (2017). Psychological reactance against news articles on nuclear energy: Effects of prospect frames and issue frames. Korean Journal of Journalism & Communication Studies, 61(5), 130-164. [https://doi.org/10.20879/kjjcs.2017.61.5.005]
  • Kim, J., &. Cho, J. (2019). Investigation of effects of individuals social viewing of fine dust information obtained through social media on behavioral intentions of disease prevention: Application of health beliefs model. Korean Journal of Broadcasting and Telecommunication Studies, 33(4), 37-65.
  • Kim, J., & Yu, H. (2012). The effects of gain- or loss-framed health news and exemplars on the perception of reported issues and prevention intention. Korean Journal of Journalism & Communication Studies, 56(1), 5-30.
  • Kim, J., & Yu, H. (2012). The effects of gain- or loss-framed internet health news and replies on the perception of reported issues and prevention intention. Korean Journal of Broadcasting and Telecommunication Studies, 26(3), 176-217.
  • Kim, J., Choi, J., & Park, D.-J. (2018). The influence of health information overload caused by media use on health information distrust. The Korean Journal of Advertising and Public Relations, 20(2), 37-63. [https://doi.org/10.16914/kjapr.2018.20.2.37]
  • Kim, J.-H. (2015). A study on public information service using Twitter: Focused on Twitters of major metropolitans. Journal of Korean Library and Information Science Society, 46(1), 115-133. [https://doi.org/10.16981/kliss.46.1.201503.115]
  • Kim, M. H. (1997). Health belief model approach to health beliefs, attitude, and health behaviors concerning HIV/AIDS. Journal of Korean Society for Health Education and Promotion, 14(2), 125-147.
  • Kim, S.-J., & Cha, H. (2009). The effect of public segmentation and message framing on the health risk communication: Applying anger activism model. Korean Journal of Journalism & Communication Studies, 53(2), 231-253.
  • Klinger, U. (2013). Mastering the art of social media: Swiss parties, the 2011 national election and digital challenges. Information, Communication & Society, 16(5), 717-736. [https://doi.org/10.1080/1369118X.2013.782329]
  • Koh, Y. C., & Choi, N. J. (2016). Investigation on the diversity of news reported by Jeju local newspapers: Regarding the news on ‘Free International City’ and ‘Island of Peace’. Journal of Communication Science, 6(2), 5-42.
  • Kuiken, J., Schuth, A., Spitters, M., & Marx, M. (2017). Effective headlines of newspaper articles in a digital environment. Digital Journalism, 5(10), 1300-1314. [https://doi.org/10.1080/21670811.2017.1279978]
  • Leavy, S. (2019). Uncovering gender bias in newspaper coverage of Irish politicians using machine learning. Digital Scholarship in the Humanities, 34(1), 48-63. [https://doi.org/10.1093/llc/fqy005]
  • Lee, J. H., & Kil, W. (2019). News agenda classification and media diversity analysis using topic modeling: Based on news on the Presidential New Year Press Conference. Korean Journal of Broadcasting and Telecommunication Studies, 33(1), 161-196
  • Lee, M.-K., & Lee, Y.-R. (2012). A news frame study of domestic Korean newspapers' coverage on animal infectious disease: Focused on the case of foot-and-mouth disease reporting among national & regional newspapers. Journal of Communication Science, 12(2), 378-414.
  • Lee, S. H., & Lim, T. Y. (2019). Connective action and affective language: Computational text analysis of Facebook comments on social movements in South Korea. International Journal of Communication, 13, 2960–2983.
  • Lee, Y. J. (2009). The use of Twitter service as social media for information sharing in emergency disaster response. Journal of Korean Society of Societal Security, 2(3), 16-18.
  • McLeod, D. M., & Detenber, B. H. (1999). Framing effects of television news coverage of social protest. Journal of Communication, 49(3), 3-23. [https://doi.org/10.1111/j.1460-2466.1999.tb02802.x]
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger, (Eds.). Advances in Neural Information Processing Systems 26 (pp. 3111-3119). Lake Tahoe, NV: Curran Associates, Inc.
  • Newman, N. (2011). Mainstream media and the distribution of news in the age of social media. Oxford, UK: Reuters Institute for the Study of Journalism.
  • Opperhuizen, A. E., Schouten, K., & Klijn, E. H. (2019). Framing a conflict! How media report on earthquake risks caused by gas drilling: A longitudinal analysis using machine learning techniques of media reporting on gas drilling from 1990 to 2015. Journalism Studies, 20(5), 714-734. [https://doi.org/10.1080/1461670X.2017.1418672]
  • Pan, Z., & Kosicki, G. M. (1993). Framing analysis: An approach to news discourse. Political Communication, 10(1), 55-75. [https://doi.org/10.1080/10584609.1993.9962963]
  • Park, H. C., & Park, H. W. (2017). Disaster communication networks on Twitter: Gyeongju earthquake. Journal of the Korean Data Analysis Society, 19(1), 291-302. [https://doi.org/10.37727/jkdas.2017.19.1.291]
  • Park, J., Ryu, P.-M., & Oh, H.-J. (2017). A collecting model of public opinion on social disaster in Twitter: A case study in `humidifier disinfectant`. KIPS Transactions on Software and Data Engineering, 6(4), 177-184. [https://doi.org/10.3745/KTSDE.2017.6.4.177]
  • Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532-1543). Doha, Qatar: Association for Computational Linguistics. [https://doi.org/10.3115/v1/D14-1162]
  • Price, V., Tewksbury, D., & Powers, E. (1997). Switching trains of thought: The impact of news frames on readers' cognitive responses. Communication Research, 24(5), 481-506. [https://doi.org/10.1177/009365097024005002]
  • Quick, B. L., & Bates, B. R. (2010). The use of gain-or loss-frame messages and efficacy appeals to dissuade excessive alcohol consumption among college students: A test of psychological reactance theory. Journal of Health Communication, 15(6), 603-628. [https://doi.org/10.1080/10810730.2010.499593]
  • Rhee, J. (2000). Frames, interpretations and communication effects: An overview and assessment of frame studies, Media & Society, 29, 85-153.
  • Rhee, J. (2001). Impacts of news frames in the coverage of conflicting issues on individual interpretation and opinion. Korean Journal of Journalism & Communication Studies, 46(1), 441-482.
  • Rhee, J., & Kim, S.-H. (2018). News frames in the coverage of fine-dust disaster: Application of Structural Topic Modeling. Korean Journal of Journalism & Communication Studies, 62(4), 125-158. [https://doi.org/10.20879/kjjcs.2018.62.4.004]
  • Rosenstock, I. M. (1974). The health belief model and preventive health behavior. Health Education Monographs, 2(4), 354-386. [https://doi.org/10.1177/109019817400200405]
  • Sagi, E., Diermeier, D., & Kaufmann, S. (2013). Identifying issue frames in text. PLoS ONE, 8(7), e69185. [https://doi.org/10.1371/journal.pone.0069185]
  • Sagi, E., & Dehghani, M. (2014). Measuring moral rhetoric in text. Social Science Computer Review, 32(2), 132-144. [https://doi.org/10.1177/0894439313506837]
  • Scheufele, D. A. (1999). Framing as a theory of media effects. Journal of Communication, 49(1), 103-122. [https://doi.org/10.1111/j.1460-2466.1999.tb02784.x]
  • Shih, T. J., Wijaya, R., & Brossard, D. (2008). Media coverage of public health epidemics: Linking framing and issue attention cycle toward an integrated theory of print news coverage of epidemics. Mass Communication & Society, 11(2), 141-160. [https://doi.org/10.1080/15205430701668121]
  • Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217-248. [https://doi.org/10.2753/MIS0742-1222290408]
  • Stryker, J. E. (2003). Articles media and marijuana: A longitudinal analysis of news media effects on adolescents' marijuana use and related outcomes, 1977-1999. Journal of Health Communication, 8(4), 305-328. [https://doi.org/10.1080/10810730305724]
  • Talosig-Garcia, M., & Davis, S. W. (2005). Information-seeking behavior of minority breast cancer patients: An exploratory study. Journal of Health Communication, 10(1), 53-64. [https://doi.org/10.1080/10810730500263638]
  • Tanner-Smith, E. E., & Brown, T. N. (2010). Evaluating the health belief model: A critical review of studies predicting mammographic and pap screening. Social Theory & Health, 8(1), 95-125. [https://doi.org/10.1057/sth.2009.23]
  • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453-458. [https://doi.org/10.1126/science.7455683]
  • Van Rijsbergen, C. (1979, September). Information retrieval: Theory and practice. In Proceedings of the Joint IBM/University of Newcastle upon Tyne Seminar on Data Base Systems (pp. 1-14). Newcastle, UK: University of Newcastle.
  • Vidgen, B., & Yasseri, T. (2020). Detecting weak and strong Islamophobic hate speech on social media. Journal of Information Technology & Politics, 17(1), 66-78. [https://doi.org/10.1080/19331681.2019.1702607]
  • Welbers, K., & Opgenhaffen, M. (2019). Presenting news on social media: Media logic in the communication style of newspapers on Facebook. Digital Journalism, 7(1), 45-62. [https://doi.org/10.1080/21670811.2018.1493939]
  • Yanovitzky, I., & Blitz, C. L. (2000). Effect of media coverage and physician advice on utilization of breast cancer screening by women 40 years and older. Journal of Health Communication, 5(2), 117-134. [https://doi.org/10.1080/108107300406857]
  • Yu, J., & Keum, H. (2018). Twitter as a risk information source: The effect of update recency and social endorsement on credibility judgments. Korean Journal of Broadcasting and Telecommunication Studies, 32(1), 33-65.
  • Zhang, H., Park, J., & Lee, K. (2020). A study of factors affecting preventive behavior intentions of overseas infectious disease based on health belief model: Focusing on the moderating effects of SNS eWOM. The Korean Journal of Advertising and Public Relations, 22(2), 265-302. [https://doi.org/10.16914/kjapr.2020.22.2.265]

Appendix

부록

  • 고영철·최낙진 (2006). 제주지역 신문 뉴스의 다양성에 관한 탐색적 연구:‘국제자유도시’와 ‘평화의 섬’ 관련 기사를 중심으로. <언론과학연구>, 6권 2호, 5-42.
  • 김명혜 (1997). 건강신념모델을 적용한 AIDS 예방의 건강신념, 태도 및 건강행동. <보건교육건강증진학회지>, 14권 2호, 125-147.
  • 김수진·차희원 (2009). 공중유형과 메시지 프레이밍이 건강위험 커뮤니케이션 태도에 미치는 영향: 분노행동주의모델(Anger Activism Model)의 적용. <한국언론학보>, 53권 2호, 231-253.
  • 김은정·유홍식·한규준 (2019). 국내 신문의 문재인정부 소득주도성장에 대한 뉴스보도 프레임 유형 분석. <한국언론정보학보>, 96권, 7-36.
  • 김종화·유홍식 (2012a). 건강보도에서 획득ㆍ손실 프레임과 예시가 이슈의 지각과 예방행위 의도에 미치는 영향. <한국언론학보>, 56권 1호, 5-30.
  • 김종화·유홍식 (2012b). 인터넷 건강보도에서 획득ㆍ손실 프레임과 댓글이 이슈 지각과 예방행위 의도에 미치는 영향. <한국방송학보>, 26권 3호, 176-217.
  • 김주미·최정화·박동진 (2018). 미디어 이용에 따른 건강정보 과부하가 건강정보 불신에 미치는 영향. <한국광고홍보학보>, 20권 2호, 37-63.
  • 김지현 (2015). 트위터를 활용한 공공 정보서비스 연구: 주요 광역도시 트위터들을 중심으로. <한국도서관·정보학회지>, 46권 1호, 115-133.
  • 김지혜·조재희 (2019). 미세먼지에 대한 소셜 미디어 건강정보 사회적 시청이 질병예방행위의도에 미치는 영향: 건강신념모델의 매개모형 적용을 중심으로. <한국방송학보>, 33권 4호, 37-65.
  • 김효정 (2017). 원자력 기사 프레이밍이 수용자의 심리적 저항에 미치는 영향: 심리적 저항 이론 (Psychological Reactance Theory)을 중심으로. <한국언론학보>, 61권 5호, 130-164.
  • 박준형·류법모·오효정 (2017). 사회적 재난에 대한 트위터 여론 수렴 모델: ‘가습기 살균제’ 사건을 중심으로. <정보처리학회논문지. 소프트웨어 및 데이터 공학>, 6권 4호, 177-184.
  • 박효찬·박한우 (2017). 트위터 데이터를 활용한 재난 커뮤니케이션 네트워크 분석: 2016 년 경주 지진. <Journal of The Korean Data Analysis Society>, 19권 1호, 291-302.
  • 배병걸·이보람·최선화 (2015, 6월). <소셜 빅데이터와 지진의 연관성 분석>. 한국정보과학회 한국컴퓨터종합학술대회. 제주: 제주대학교.
  • 안순태·이하나 (2016). 자살예방을 위한 미디어 보도 방향: 건강신념모델을 통한 우울증 보도 내용분석. <보건사회연구>, 36권 1호, 529-564.
  • 유재원·금희조 (2018). 트위터의 업데이트 신속성과 사회적 지지가 정보원 신뢰도와 위험인식에 미치는 영향: 정보원 신뢰도의 매개효과를 중심으로. <한국방송학보>, 32권 1호, 33-65.
  • 이민규·이예리 (2012). 국내 신문의 가축 전염병 위험 보도에 대한 프레임 연구: 중앙지와 지역지의 구제역 보도를 중심으로. <언론과학연구>, 12권 2호, 378-414.
  • 이종혁·길우영 (2019). 토픽모델링을 이용한 뉴스 의제 분류와 미디어 다양성 분석. <한국방송학보>, 33권 1호, 161-196.
  • 이영재 (2009). 긴급재난대응에서 정보공유를 위한 소셜 미디어(Social Media) 트위터(twitter) 서비스 활용. <한국재난관리표준학회지>, 2권 3호, 16-18.
  • 이준웅 (2000). 프레임, 해석 그리고 커뮤니케이션 효과. <언론과 사회>, 29권, 85-153.
  • 이준웅 (2001). 갈등적 이슈에 대한 뉴스 프레임 구성방식이 의견형성에 미치는 영향: 내러티브 해석모형의 경험적 검증을 중심으로. <한국언론학보>, 46권 1호, 441-482.
  • 이준웅·김성희 (2018). 미세먼지 재해 보도의 프레임 분석: 구조적 주제모형(Structural Topic Modeling)의 적용. <한국언론학보>, 62권 4호, 125-158.
  • 장해·박주식·이경식 (2020). 건강신념모델을 적용한 해외 감염병 예방 행동의도의 영향요인에 관한 연구: 외적 행위단서로서의 SNS 구전의 조절효과를 중심으로. <한국광고홍보학보>, 22권 2호, 265-302.
  • 정재선·이동훈 (2012). 정교화 가능성 관점의 프레임 효과연구: 암 관련 보도기사를 중심으로. <한국언론학보>, 56권 6호, 278-309.
  • 조민정, 이신행 (2021). 코로나19 관련 언론 보도 프레임 분석: 자료기반 자동화 프레임 추출 방법을 중심으로. <한국소통학보>, 20권 1호, 79-121.
  • 조성은·신호창·유선욱·노형신 (2012). 결핵예방 행동의도에 영향을 미치는 요인에 관한 연구-자기효능감과 공포의 매개역할을 중심으로 한 건강신념모델의 확장. <홍보학 연구>, 16권 1호, 148-177.
  • 조혜림·정민수 (2019). 자연주의 의료에 대한 언론보도와 미디어 프레이밍의 탐색적 연구. <보건사회연구>, 39권 2호, 332-357.
  • 최성호 (2020). 코로나 19 유행의 방역. <대한내과학회지>, 95권 3호, 134-140.
  • 최재웅 (2012). 뉴미디어를 활용한 재난방송 전달체계 개선 연구. <방송과 미디어>, 17권 3호, 24-39.
  • 한규훈 (2011). 여성암 조기검진 촉진 메시지의 설득효과에 미치는 건강신념요인의 영향: 한국 여성과 일본 여성 간의 비교 고찰을 토대로. <한국광고홍보학보>, 13권 2호, 377-413.
  • 하진홍·임혜준 (2020). 대규모 전염병에 관한 뉴스보도 프레임과 공중 위험인식 간의 관계 분석 연구. <언론과학연구>, 20권 1호, 191-229.