The Korean Society for Journalism & Communication (KSJCS)
[ Article ]
Korean Journal of Journalism & Communication Studies - Vol. 66, No. 6, pp.388-425
ISSN: 2586-7369 (Online)
Print publication date 31 Dec 2022
Received 12 Aug 2022 Revised 12 Nov 2022 Accepted 19 Nov 2022
DOI: https://doi.org/10.20879/kjjcs.2022.66.6.011

코로나19(COVID-19) 뉴스에 대한 위험지각과 백신 접종의향 : 수리 정보 제시방식과 개인 특성, 그리고 정서의 영향

이완수** ; 안서원***
**동서대학교 미디어콘텐츠대학 교수 wansoo1960@gmail.com
***서울과학기술대학교 경영학과 교수 sahn@seoultech.ac.kr
Risk Perception and Vaccination Intention towards COVID-19 News : Effects of Numerical Information Format, Personal Traits, and Emotion
Wansoo Lee** ; Sowon Ahn***
**Professor, College of Media Contents, Dongseo University, First Author wansoo1960@gmail.com
***Professor, Department of Business Administration, Seoul National University of Science and Technology, Corresponding Author sahn@seoultech.ac.kr

초록

본 연구는 코로나19 관련 수리 정보의 제시방식(빈도, 백분율, 비율, 추가정보 제시 조건)을 달리했을 때 사람들의 위험지각과 접종의향이 달라지는지 알아보았다. 또한 인구통계학적 변인, 백신 접종 관련 변인, 수리 이해능력이나 정치적 입장과 같은 개인 특성이 영향을 미치는지 함께 알아보았다. 연구 1에서는 백신 이상반응과 관련된 기사를 제시하였고, 연구 2에서는 재감염 관련 기사를 제시하였다. 결과를 보면, 연구 1에서는 수리 정보 제시방식에 따른 위험지각과 접종의향의 차이가 전혀 나타나지 않았다. 연구 2에서는 위험지각의 측정 문항 중 하나인 재감염 가능성에 대한 측정을 연구 1과 다르게 하였다. 그 결과 단순빈도로 제시할 때 백분율이나 비율 보다 위험지각이 더 높게 나타났고, 확진자에 대한 기저빈도를 추가로 제시한 빈도 조건은 단순빈도 조건보다 위험지각이 낮아졌다. 그러나 접종의향에서는 차이가 전혀 나타나지 않았다. 추가분석 결과를 보면, 연구 1에서는 이상반응에 대한 위험지각이 백신 접종 부작용에 대한 두려움을 매개로 접종의향에 정적인 영향을 미치며 위험지각이 접종의향에 미치는 부적 영향을 정치적 입장이 조절하는 것으로 나타났다. 연구 2에서는 코로나 감염 시 증상이나 백신 부작용과 같은 과거 경험의 심각성이 재감염 위험지각과 코로나에 대한 두려움을 매개로 접종의향에 정적 영향을 미치는 것으로 나타났다. 그리고 수리 이해능력이 높을수록 위험지각이나 코로나나 접종에 대한 두려움이 낮아지는 것을 볼 수 있었다. 마지막으로 수리 정보 메시지 효과가 코로나19 관련 헬스 커뮤니케이션에 미치는 시사점을 중심으로 논의했다.

Abstract

The current study investigated whether people’s risk perception and vaccination intention differed when the format (frequency, percentage, rate, and presentation of additional information such as base frequency and narrative) of COVID-19 related numerical information news was changed. In addition, we examined whether demographic variables, vaccination-related variables, and personal traits such as numeracy and political positions had any impact on the effect of numerical information format on risk perception and vaccination intention. In Study 1, news articles about the adverse effects of vaccinations were presented, and base frequency and narrative were added to the percentage in addition to the two frequencies, percentage, and rate. In Study 2, reinfection-related news articles were presented, and base frequency was added to frequency and percentage, and narrative was added to frequency. As a result, in Study 1, there was no difference in risk perception and vaccination intention according to the information format. To address no difference in Study 1, in Study 2, one of the risk perception measures, the likelihood of reinfection, was measured differently from Study 1. In Study 1, the likelihood of side effect was measured using the 11-point scale with 10% interval, whereas in Study 2, participants were asked to write down the likelihood directly down to two decimal places. The scale employed in Study 1 may have an interval that is too wide to accurately capture minute variations in risk likelihood elicited by various number representations. When using the new measurement, the risk perception was lower when adding the base frequency of COVID-19 patients than it was when using percentage or rate, and it was greater when using frequency than it was when using percentage or rate. However, there was no difference in the vaccination intention.

According to the results of the additional analysis, in Study 1, it was found that the risk perception of side effects had a positive effect on the vaccination intention through fear of side effects as a mediator. In addition, the political position moderated the negative effect of risk perception on the vaccination intention. That is, the more progressive the political position, the lower the fear and risk perception of vaccination and the higher the vaccination intention. In Study 2, it was found that the severity of past experiences, such as COVID-19 symptoms and vaccine side effects, had a positive effect on the vaccination intention through risk perception of reinfection and fear of COVID. And it was found that the higher the numeracy, the lower the risk perception, fear of COVID and vaccination. Finally, the implications of this study for health communication related to COVID-19 were discussed.

Keywords:

COVID-19 risk perception, vaccination intention, numerical information format, frequency, percentage

키워드:

코로나19 위험지각, 백신 접종의향, 정보제시방식, 빈도, 백분율

Acknowledgments

This paper was supported by Dongseo University’s “Dongseo Cluster Project” Research Fund of 2022 (DSU-20220003)(이 논문은 2022년도 동서대학교 “Dongseo Cluster Project” 지원에 의하여 이루어진 것임 (DSU-20220003))/ 이 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021S1A2A010700)

References

  • Ahn, S. (2006). Simon & Kahneman: Psychology talks about economics. Seoul: Gimmyoung Publishers.
  • Al-Amer, R., Maneze, D., Everett, B., Montayre, J., Villarosa, A. R., Dwekat, E., & Salamonson, Y. (2022). COVID-19 vaccination intention in the first year of the pandemic: A systematic review. Journal of Clinical Nursing, 31(1-2), 62-86. [https://doi.org/10.1111/jocn.15951]
  • Borah, P. (2022). Message framing and COVID-19 vaccination intention: Moderating roles of partisan media use and pre-attitudes about vaccination. Current Psychology, 1-10. [https://doi.org/10.1007/s12144-022-02851-3]
  • Borah, P., Hwang, J., & Hsu, Y. C. (2021). COVID-19 vaccination attitudes and intention: Message framing and the moderating role of perceived vaccine benefits. Journal of Health Communication, 26(8), 523-533. [https://doi.org/10.1080/10810730.2021.1966687]
  • Brewer, N. T., Chapman, G. B., Gibbons, F. X., Gerrard, M., McCaul, K. D., & Weinstein, N. D. (2007). Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination. Health Psychology, 26(2), 136. [https://doi.org/10.1037/0278-6133.26.2.136]
  • Chapman, G. B., & Coups, E. J. (2006). Emotions and preventive health behavior: Worry, regret, and influenza vaccination. Health Psychology, 25(1), 82-90. [https://doi.org/10.1037/0278-6133.25.1.82]
  • Chen, T., Dai, M., Xia, S., & Zhou, Y. (2021). Do messages matter? Investigating the combined effects of framing, outcome uncertainty, and number format on COVID-19 vaccination attitudes and intention. Health Communication, 1-8. [https://doi.org/10.1080/10410236.2021.1876814]
  • Choi, B. H. (2021). A study on the determinants of the general public's behavioral intention to prevent COVID-19. Crisisnomy, 17(3), 39-51. [https://doi.org/10.14251/crisisonomy.2021.17.3.39]
  • Chou, W. Y. S., & Budenz, A. (2020). Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Communication, 35(14), 1718-1722. [https://doi.org/10.1080/10410236.2020.1838096]
  • Dieckmann, N. F., Slovic, P., & Peters, E. M. (2009). The use of narrative evidence and explicit likelihood by decision makers varying in numeracy. Risk Analysis: An International Journal, 29(10), 1473-1488. [https://doi.org/10.1111/j.1539-6924.2009.01279.x]
  • Fetherstonhaugh, D., Slovic, P., Johnson, S. M., & Friedrich, J. (1997). Insensitivity to the value of human life: A study of psychophysical numbing. Journal of Risk and Uncertainty, 14, 283-300. [https://doi.org/10.1023/A:1007744326393]
  • Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S., & Combs, B. (1978). How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sciences, 9(2), 127-152. [https://doi.org/10.1007/BF00143739]
  • Gigerenzer, G. (2015). Calculated risks: How to know when numbers deceive you. New York, NY: Simon and Schuster.
  • Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684-704. [https://doi.org/10.1037/0033-295X.102.4.684]
  • Greening, L, Chandler, C. C., Stoppelbein, L., & Robison, L. J. (2005). Risk perception: Using conditional versus general base rates for risk communication. Journal of Applied Social Psychology, 35, 2094-2122. [https://doi.org/10.1111/j.1559-1816.2005.tb02211.x]
  • Grimes, D. A., & Snively G. R. (1999). Patients’ understanding of medical risks: Implications for genetic counseling. Obstetrics & Gynecology, 93, 910-914. [https://doi.org/10.1016/S0029-7844(98)00567-5]
  • Hay, J., Harris, J. N., Waters, E. A., Clayton, M. F., Ellington, L., Abernethy, A. D., & Prayor-Patterson, H. (2009). Personal communication in primary and secondary cancer prevention: Evolving discussions, emerging challenges. Journal of Health Communication, 14(S1), 18-29. [https://doi.org/10.1080/10810730902806828]
  • Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford Press.
  • Hong, J., & An, S. (2022). COVID-19 media reports and vaccination intentions. Korean Journal of Journalism and Communication Studies, 66(1), 5-42. [https://doi.org/10.20879/kjjcs.2022.66.1.001]
  • Hwang, S., Gil, J., & Choi, S. (2021). Vaccination acceptance for COVID-19: Implications of trust in government. Korean Studies of Population, 44(2), 95-120. [https://doi.org/10.31693/KJPS.2021.06.44.2.95]
  • Ishimaru, T., Okawara, M., Ando, H., Hino, A., Nagata, T., Tateishi, S., & CORoNaWork Project. (2021). Gender differences in the determinants of willingness to get the COVID-19 vaccine among the working-age population in Japan. Human Vaccines & Immunotherapeutics, 17(11), 3975-3981. [https://doi.org/10.1080/21645515.2021.1947098]
  • Kim, H. J. (2021). The impact of gain- versus loss-framed news on prevention behaviors during the COVID-19 outbreak. Journal of Communication Research, 58(4), 49-88.
  • Kim, Y. (2014). Risk communication. Seoul: Communication Books.
  • Kim, Y., Kim, H., & So, D. (2022 ). The politicization of COVID-19 vaccines: The impact of political orientations and conspiracy beliefs on COVID-19 vaccination acceptance. Advertising Research, 132, 97-132. [https://doi.org/10.16914/ar.2022.132.97]
  • Knapp, P., Gardner, P. H., Carrigan, N., Raynor, D. K., & Woolf, E. (2009). Perceived risk of medicine side effects in users of a patient information website: A study of the use of verbal descriptors, percentages and natural frequencies. British Journal of Health Psychology, 14(3), 579-594. [https://doi.org/10.1348/135910708X375344]
  • Knapp, P., Gardner, P. H., McMillan, B., Raynor, D. K., & Woolf, E. (2013). Evaluating a combined (frequency and percentage) risk expression to communicate information on medicine side effects to patients. International Journal of Pharmacy Practice, 21(4), 226-232. [https://doi.org/10.1111/j.2042-7174.2012.00254.x]
  • Kreuter, M. W., Green, M. C., Cappella, J. N., Slater, M. D., Wise, M. E., Storey, D., & Woolley, S. (2007). Narrative communication in cancer prevention and control: A framework to guide research and application. Annals of Behavioral Medicine, 33(3), 221-235. [https://doi.org/10.1007/BF02879904]
  • Lau, N. T., Wilkey, E. D., Soltanlou, M., Lagacé Cusiac, R., Peters, L., Tremblay, P., & Ansari, D. (2022). Numeracy and COVID-19: Examining interrelationships between numeracy, health numeracy and behaviour. Royal Society Open Science, 9(3), 201303. [https://doi.org/10.1098/rsos.201303]
  • Lazarus, J. V., Ratzan, S. C., Palayew, A., Gostin, L. O., Larson, H. J., Rabin, K., ... & El-Mohandes, A. (2021). A global survey of potential acceptance of a COVID-19 vaccine. Nature Medicine, 27(2), 225-228. [https://doi.org/10.1038/s41591-020-1124-9]
  • Lazarus, J. V., Wyka, K., Rauh, L., Rabin, K., Ratzan, S., Gostin, L. O., & El-Mohandes, A. (2020). Hesitant or not? The association of age, gender, and education with potential acceptance of a COVID-19 vaccine: A country-level analysis. Journal of Health Communication, 25(10), 799-807. [https://doi.org/10.1080/10810730.2020.1868630]
  • Lee, J., & Hahn, Y. (2021). The effect analysis of three statistics visualizations on the reader's vaccine benefit-risk comprehension. Journal of Integrated Design Research, 20(4), 59-75.
  • Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making, 21(1), 37-44. [https://doi.org/10.1177/0272989X0102100105]
  • Milligan, M. A., Hoyt, D. L., Gold, A. K., Hiserodt, M., & Otto, M. W. (2021). COVID-19 vaccine acceptance: Influential roles of political party and religiosity. Psychology, Health & Medicine, 1-11. [https://doi.org/10.1080/13548506.2021.1969026]
  • No, J. (2020, February, 13). How was the Korean media reporting on ‘Corona 19’… “No exaggeration, speculation, live coverage,” Hankyoreh, Retrieved from https://www.hani.co.kr/arti
  • Paek, H., & Yang, J. H. (2017). The effects of absolute versus relative risk presentation format, source credibility, and numeracy on risk perceptions and behavioral intentions. Journal of Public Relations, 21(3), 32-63. [https://doi.org/10.15814/jpr.2017.21.3.32]
  • Palm, R., Bolsen, T., & Kingsland, J. T. (2021). The effect of frames on COVID-19 vaccine hesitancy. Frontiers in Political Science, 3, 661257. [https://doi.org/10.3389/fpos.2021.661257]
  • Peng, L., Guo, Y., & Hu, D. (2021). Information framing effect on public’s intention to receive the COVID-19 vaccination in China. Vaccines, 9(9), 995. [https://doi.org/10.3390/vaccines9090995]
  • Peters, E., Dieckmann, N., Dixon, A., Hibbard, J. H., & Mertz, C. K. (2007). Less is more in presenting quality information to consumers. Medical Care Research and Review, 64(2), 169-190. [https://doi.org/10.1177/10775587070640020301]
  • Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological Bulletin, 135(6), 943. [https://doi.org/10.1037/a0017327]
  • Seong, M., Kim, I., Kang, M., & Lee, M. (2020). Validity and reliability evaluation of the Korean version of the fear of COVID-19 scales. Korea Society for Wellness, 15(4), 391-399. [https://doi.org/10.21097/ksw.2020.11.15.4.391]
  • Slovic, P., Monahan, J., & MacGregor, D. G. (2000). Violence risk assessment and risk communication: The effects of using actual cases, providing instruction, and employing probability versus frequency formats. Law and Human Behavior, 24, 271-296. [https://doi.org/10.1023/A:1005595519944]
  • Spiegelhalter, D. (2017). Trust in numbers. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(4), 948-965. [https://doi.org/10.1111/rssa.12302]
  • Thompson, C. A., Taber, J. M., Sidney, P. G., Fitzsimmons, C., Mielicki, M., Matthews, P. G., ... & Coifman, K. (2020). Math matters during a pandemic: A novel, brief educational intervention combats whole number bias to improve health decision-making and predicts COVID-19 risk perceptions and worry across 10 days. [https://doi.org/10.31234/osf.io/hukyv]
  • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453-458. [https://doi.org/10.1126/science.7455683]
  • Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., & Willer, R. (2020). Using social and behavioral science to support COVID-19 pandemic response. Nature Human Behaviour, 4(5), 460-471. [https://doi.org/10.1038/s41562-020-0884-z]
  • Visschers, V. H., Meertens, R. M., Passchier, W. W., & De Vries, N. N. (2009). Probability information in risk communication: A review of the research literature. Risk Analysis: An International Journal, 29(2), 267-287. [https://doi.org/10.1111/j.1539-6924.2008.01137.x]
  • Xu, Z., Ellis, L., & Laffidy, M. (2022). News frames and news exposure predicting flu vaccination uptake: Evidence from us newspapers, 2011–2018 using computational methods. Health Communication, 1-9. [https://doi.org/10.1080/10410236.2020.1818958]
  • Yamagishi, K. (1997). When a 12.86% mortality is more dangerous than 24.15%: Implications for risk communication. Applied Cognitive Psychology, 11, 495-506. [https://doi.org/10.1002/(SICI)1099-0720(199712)11:6<495::AID-ACP481>3.0.CO;2-J]
  • Ye, W., Li, Q., & Yu, S. (2021). Persuasive effects of message framing and narrative format on promoting COVID-19 vaccination: A study on Chinese college students. International Journal of Environmental Research and Public Health, 18(18), 9485. [https://doi.org/10.3390/ijerph18189485]

Appendix

부록

  • 김영욱 (2014). <위험 커뮤니케이션>. 서울: 커뮤니케이션북스.
  • 김영욱·김혜정·소담이 (2022). 코로나 19 백신의 정치화: 정치적 성향과 음모론에 대한 신념이 백신 접종에 미치는 영향. <광고연구>, 132호, 97-132.
  • 김효정 (2021). 코로나 19 기사의 이익-손실 프레임이 개인 예방행동 의도에 미치는 영향 연구: 대처 효능감 정보와 정치 성향의 조절 효과를 중심으로. <언론정보연구>, 58권 4호, 49-88.
  • 노지원 (2020, 2, 13). 한국 언론 ‘코로나19’ 보도 어땠나···“과장·추측성·생중계식 보도 안 돼”. <한겨레>. Retrieved from https://www.hani.co.kr/arti
  • 백혜진·양지혜 (2017). 절대적 대 상대적 위험 제시 형식, 정보원 신뢰도, 수리 문해력이 공중의 위험 인식과 행동 의도에 미치는 영향. <Journal of Public Relations>, 21권 3호, 32-63.
  • 성미현·김인숙·강미란·이미순. (2020). 한국판 COVID-19 에 대한 두려움 측정도구 타당도와 신뢰도. <한국웰니스학회지>, 15권 4호, 391-399.
  • 안서원 (2006). <사이먼 & 카너먼: 심리학, 경제를 말하다>. 서울: 김영사.
  • 이지연·한영애 (2021). 백신 접종의 혜택-위험 이해도 제고를 위한 통계정보 시각화 3종의 개발과 효과 검증. <Journal of Integrated Design Research>, 20권 4호, 59-75.
  • 최부헌 (2021). 일반 대중의 코로나19 예방행동의도 결정요인 연구. <한국위기관리논집>, 17권 3호, 39-51.
  • 홍주나·안순태 (2022). 코로나19 언론 보도와 백신 접종 의도 : 감염 취약성과 백신 부작용 취약성의 매개효과. <한국언론학보>, 66권 1호, 5-42.
  • 황선재·길정아·최슬기 (2021). 코로나19 백신수용성: 정부신뢰 요인을 중심으로. <한국인구학>, 44권 2호, 95-120.