The Korean Society for Journalism & Communication (KSJCS)
[ Article ]
Korean Journal of Journalism & Communication Studies - Vol. 67, No. 1, pp.85-124
ISSN: 2586-7369 (Online)
Print publication date 28 Feb 2023
Received 16 Dec 2022 Revised 27 Jan 2023 Accepted 30 Jan 2023
DOI: https://doi.org/10.20879/kjjcs.2023.67.1.003

유튜브 '사이버 렉카' 영상에 달린 중립 댓글이 다른 시청자들의 악성 댓글 작성 의도에 미치는 영향력 연구 : 정확성 넛지와 동적 규범의 효과를 중심으로

정민웅** ; 이세영*** ; 금희조****
**성균관대학교 글로벌융복합콘텐츠연구소 선임연구원 syzka@skku.edu
***성균관대학교 미디어커뮤니케이션학과 교수 gathemane@skku.edu
****성균관대학교 미디어커뮤니케이션학과 교수 hkeum@skku.edu
The Effect of Neutral Comments on YouTube “Cyber Wrecker” Videos on Other Viewers’ Commenting Behavior : Testing the Role of Accuracy Nudge and Dynamic Norms
Minwoong Chung** ; Seyoung Lee*** ; Heejo Keum****
**Senior Researcher, Global Convergence Content Research Center, Sungkyunkwan University, first author syzka@skku.edu
***Professor, Department of Media and Communication, Sungkyunkwan University gathemane@skku.edu
****Professor, Department of Media and Communication, Sungkyunkwan University, corresponding author hkeum@skku.edu

초록

본 연구는 유튜브 "사이버 렉카" (“사이버 바람잡이”) 영상에 달린 중립 댓글들이 다른 시청자들의 악성 댓글 작성 의도에 미치는 영향력을 살펴보았다. 일반적인 중립적 댓글과는 달리, 사이버 렉카 영상에 달리는 중립 댓글들은 영상 속 정보의 정확성이 확인되지 않았으므로 무조건적 비판이나 지지를 삼갈 것을 다른 시청자들에게 제안하는 특징을 가지고 있다. 이렇듯 논리적 구조와 설득의 형태를 지닌 채 이성적 판단을 제언하는 중립 댓글들이 다른 사람들로 하여금 정보의 정확성 여부를 생각하게끔 만들고, 그 결과 악성 댓글 작성 의도를 낮출 수 있는지에 대해 집중적으로 살펴보았다. 온라인 실험을 실시한 결과 악성 댓글이 다수를 이루는 상황은 부정적 댓글 작성 의도를 높이는 것으로 나타났다. 중립 댓글은 오히려 악성 댓글 작성 의도를 유의하게 높이는 것이 발견되었으며, 중립 댓글이 영상 속 정보의 정확성 부재 여부를 직접적으로 언급할수록, 이러한 중립 댓글의 숫자가 점점 증가할수록 그 영향력은 더욱 큰 것으로 나타났다. 이러한 결과를 바탕으로 사이버 렉카 영상에 달린 부정적 댓글과 중립 댓글이 다른 시청자들의 악성 댓글 작성 의도에 미치는 영향에 대한 이론적 함의를 논하였다. 또한 이와 관련하여 악성 댓글 작성을 예방할 수 있는 실용적 함의에 대해서도 기술하였다.

Abstract

This study investigated the effect of neutral comments on YouTube "Cyber Wrecker" videos on other viewers’ commenting behavior—specifically, their intention to leave uncivil comments. Cyber wreckers refer to people who create and post YouTube videos regarding social figures’ mainly ethical and moral issues. They make accusations about someone based on unverified information online, which in turn can encourage viewers’ uncivil communication behaviors attacking the targeted person. While most viewers leave malicious comments, some people leave "neutral" comments that have unique characteristics. General neutral comments can be defined as impartial, even-handed opinions on political or conflicting issues. Unlike these, neutral comments on Cyber Wrecker videos 1) question the veracity of the information by drawing attention to the lack of fact-checking, 2) show their intention to refrain from blindly accepting or rejecting the accusations, and 3) frequently persuade others to take a neutral stance on the matter rather than leaving one-sided comments. Based on these characteristics, this study argued that these neutral comments can function as an accuracy nudge, which is known to draw attention to the idea of correctness and encourage people to be more discrete about subsequent behaviors (e.g., sharing information). Thus, this study hypothesized that neutral comments on cyber wrecker videos would decrease viewers’ willingness to leave uncivil comments; it was also predicted that the direct mention of the absence of accuracy, compared to the indirect mention of it, could further decrease the behavioral intention. Also, guided by the dynamic norms literature, this study also hypothesized that an increasing number of neutral comments would be more influential than a static, fixed number of neutral comments. A 2 (neutral comment norms: static vs. dynamic) x 2 (accuracy mention: indirect vs. direct) between-subject online experiment was conducted to test the study hypotheses. The results showed that participants who read many malicious comments reported significantly greater willingness to leave uncivil comments than those who did not read any comments. Neutral comments significantly influenced participants’ intention to leave uncivil comments. However, the direction of the effect was inconsistent with the predictions. Participants who read neutral comments showed significantly greater willingness to leave uncivil comments than those who did not read any comments. There was no substantial difference between the direct and indirect mentions of the concept of accuracy. Participants also had the strongest intention to post uncivil comments when they read a growing amount of neutral comments that explicitly questioned the veracity of the content. Overall, these results suggest that seeing many malicious comments can result in leaving uncivil comments, consistent with the predictions of social norms theories. The unexpected findings regarding the neutral comments can be attributed to psychological reactance: neutral comments persuading others to refrain from leaving comments may threaten readers’ perceived freedom regarding commenting behavior, which may be reflected by a greater willingness to leave uncivil comments. It is also possible that neutral comments may be perceived differently (e.g., supporting the targeted person), rather than an accuracy nudge. Based on these findings, theoretical and practical implications are discussed.

Keywords:

Cyber Wrecker, YouTube, Neutral Comment, Accuracy Nudge, Social Norms

키워드:

사이버 렉카, 유튜브, 중립 댓글, 정확성 넛지, 사회 규범

Acknowledgments

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021S1A5C2A02088387)(이 연구는 2021년 대한민국 교육부와 한국연구재단의 지원(NRF-2021S1A5C2A02088387)을 받아 수행된 연구임).

References

  • Ajzen, I. (2015). Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Italian Review of Agricultural Economics, 70(2), 121-138.
  • Ajzen, I., Joyce, N., Sheikh, S., & Cote, N. G. (2011). Knowledge and the prediction of behavior: The role of information accuracy in the theory of planned behavior. Basic and Applied Social Psychology, 33(2), 101-117. [https://doi.org/10.1080/01973533.2011.568834]
  • Aldoh, A., Sparks, P., & Harris, P. R. (2021). Dynamic norms and food choice: Reflections on a failure of minority norm information to influence motivation to reduce meat consumption. Sustainability, 13(15), 8315. [https://doi.org/10.3390/su13158315]
  • Bastiaensens, S., Pabian, S., Vandebosch, H., Poels, K., Van Cleemput, K., DeSmet, A., & De Bourdeaudhuij, I. (2016). From normative influence to social pressure: How relevant others affect whether bystanders join in cyberbullying. Social Development, 25(1), 193-211. [https://doi.org/10.1111/sode.12134]
  • Boster, F. J., Shaw, A. Z., Carpenter, C. J., & Massi Lindsey, L. L. (2014). Simulation of a dynamic theory of reasoned action. Simulation & Gaming, 45(6), 699-731. [https://doi.org/10.1177/1046878114562930]
  • Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108(supplement 2), 10918-10925. [https://doi.org/10.1073/pnas.1100290108]
  • Brehm, J. W. (1966). A theory of psychological reactance. New York, NY: Academic Press.
  • Chen, L., Ho, S. S., & Lwin, M. O. (2017). A meta-analysis of factors predicting cyberbullying perpetration and victimization: From the social cognitive and media effects approach. New Media & Society, 19(8), 1194-1213. [https://doi.org/10.1177/1461444816634037]
  • Chung, M. (2020). The role of trending norms and group identity on pro-environmental behaviors (Doctoral dissertation). East Lansing, MI: Michigan State University.
  • Cialdini, R. B., Reno, R. R., & Kallgren, C. A. (1990). A focus theory of normative conduct: Recycling the concept of norms to reduce littering in public places. Journal of Personality and Social Psychology, 58(6), 1015-1026. [https://doi.org/10.1037/0022-3514.58.6.1015]
  • Doane, A. N., Pearson, M. R., & Kelley, M. L. (2014). Predictors of cyberbullying perpetration among college students: An application of the theory of reasoned action. Computers in Human Behavior, 36, 154-162. [https://doi.org/10.1016/j.chb.2014.03.051]
  • Eom, K., & Kim, D. (2021). Automated classification model for online public opinions in a political arena: Kobert based sentiment analysis. Korean Party Studies Review, 20(3), 167-191. [https://doi.org/10.30992/KPSR.2021.09.20.3.167]
  • Epstein, Z., Berinsky, A. J., Cole, R., Gully, A., Pennycook, G., & Rand, D. G. (2021). Developing an accuracy-prompt toolkit to reduce COVID-19 misinformation online. Harvard Kennedy School Misinformation Review. [https://doi.org/10.37016/mr-2020-71]
  • Fishbein, M., & Ajzen, I. (2010). Predicting and changing behavior: The reasoned action approach. New York: Psychology Press. [https://doi.org/10.4324/9780203838020]
  • Geber, S., Tribelhorn, L., Hitchman, S. C., & Friemel, T. N. (2022). Dynamic normsfor dynamic times? An experiment on the effects of dynamic and static norms messages on COVID-19 vaccination intention. SCM Studies in Communication and Media, 11(3), 453-476. [https://doi.org/10.5771/2192-4007-2022-3-453]
  • Guess, A. M., Lerner, M., Lyons, B., Montgomery, J. M., Nyhan, B., Reifler, J., & Sircar, N. (2020). A digital media literacy intervention increases discernment between mainstream and false news in the United States and India. Proceedings of the National Academy of Sciences, 117(27), 15536-15545. [https://doi.org/10.1073/pnas.1920498117]
  • Hubbard, T. L. (2015). The varieties of momentum-like experience. Psychological Bulletin, 141(6), 1081-1119. [https://doi.org/10.1037/bul0000016]
  • Iyengar, S., & Kinder, D. R. (1987). News that matters: Television and American opinion. Chicago: University of Chicago Press.
  • Jho, W., Lee, B.-J., & Kim, S.-Y. (2018). Friends or foes to democratic deliberation?: The effects of internet user comments on the perception of media bias and on information selection. Korean Political Science Review, 52(5), 115-139. [https://doi.org/10.18854/kpsr.2018.52.5.005]
  • Kim, J., Wohn, D. Y., & Cha, M. (2020). Detection of hate speech with emotes in online streaming chat: Based on deep learning model. Journal of KIISE, 47(11), 1032-1037. [https://doi.org/10.5626/JOK.2020.47.11.1032]
  • Kim, J.-Y. (2022). A study on the characteristics and pattern of comments as online public sphere: Implication for online platform corporation innovation. Journal of Corporation and Innovation, 45(3), 181-196.
  • Kim, W. J., & Han, J. H. (2016). The effects of posted comments tagged to newspaper articles to readers’ perceived crisis responsibility and their purchase intention. The Korean Journal of Advertising, 27(8), 109-137. [https://doi.org/10.14377/KJA.2016.11.30.109]
  • Korea Press Foundation. (2021). Social media users in Korea 2021. Retrieved 12/16/22 from https://www.kpf.or.kr/front/research/consumerDetail.do?miv_pageNo=&miv_pageSize=&total_cnt=&LISTOP=&mode=W&seq=592324&link_g_topmenu_id=&link_g_submenu_id=&link_g_homepage=F&reg_stadt=&reg_enddt=&searchkey=all1&searchtxt=
  • Kwon, S. (2022, November 24). Yeungnam University refined 50 information and communication technology terms. No Cut News. Retrived 1/18/23 from https://www.nocutnews.co.kr/news/5854473
  • Lapinski, M. K., Kerr, J. M., Zhao, J., & Shupp, R. S. (2017). Social norms, behavioral payment programs, and cooperative behaviors: Toward a theory of financial incentives in normative systems. Human Communication Research, 43(1), 148-171. [https://doi.org/10.1111/hcre.12099]
  • Lee, E.-J. (2011). Perceived bias or biased perception? Effects of others’ comments, perceived opinion climate, and issue involvement on perceived news slant. Korean Journal of Journalism and Communication Studies, 55(3), 179-198.
  • Lee, S. H. (2021). Biased artificial intelligence: Analyzing the types of hate speech classified by ‘cleanbot’, NAVER AI for detecting malicious comments. Journal of Cybercommunication Academic Society, 38(4), 33-75. [https://doi.org/10.36494/JCAS.2021.12.38.4.33]
  • Lee, S. H., Lee, J. Y., Jo, M.-J., & Park, T.-K. (2022). Machine learning-based analysis of malicious comments on youtube: Lexical features of comments on “cyber wrecker”. Journal of Digital Contents Society, 23(6), 1115-1122. [https://doi.org/10.9728/dcs.2022.23.6.1115]
  • Lee, S. J., & Liu, J. (2021). Leveraging dynamic norm messages to promote counter-normative health behaviors: The moderating role of current and future injunctive norms, attitude and self-efficacy. Health Communication. [https://doi.org/10.1080/10410236.2021.1991638]
  • Lee, S.-Y., & Park, J. (2020). A research on the effect of direction and social approval strength of best comments on attitudes toward online policy articles: Application of heuristic-systematic model. Korean Journal of Broadcasting and Telecommunication Studies, 34(6), 313-351.
  • Lewis, R., Marwick, A. E., & Partin, W. C. (2021). "We dissect stupidity and respond to it": Response videos and networked harassment on YouTube. American Behavioral Scientist, 65(5), 735-756. [https://doi.org/10.1177/0002764221989781]
  • Loschelder, D. D., Siepelmeyer, H., Fischer, D., & Rubel, J. A. (2019). Dynamic norms drive sustainable consumption: Norm-based nudging helps caf←customers to avoid disposable to-go-cups. Journal of Economic Psychology, 75, 102146. [https://doi.org/10.1016/j.joep.2019.02.002]
  • Maglio, S. J., & Polman, E. (2016). Revising probability estimates: Why increasing likelihood means increasing impact. Journal of Personality and Social Psychology, 111(2), 141-158. [https://doi.org/10.1037/pspa0000058]
  • McEachan, R., Taylor, N., Harrison, R., Lawton, R., Gardner, P., & Conner, M. (2016). Meta-analysis of the reasoned action approach (RAA) to understanding health behaviors. Annals of Behavioral Medicine, 50(4), 592-612. [https://doi.org/10.1007/s12160-016-9798-4]
  • Mortensen, C. R., Neel, R., Cialdini, R. B., Jaeger, C. M., Jacobson, R. P., & Ringel, M. M. (2019). Trending norms: A lever for encouraging behaviors performed by the minority. Social Psychological and Personality Science, 10(2), 201-210. [https://doi.org/10.1177/1948550617734615]
  • Pabian, S., & Vandebosch, H. (2014). Using the theory of planned behaviour to understand cyberbullying: The importance of beliefs for developing interventions. European Journal of Developmental Psychology, 11(4), 463-477. [https://doi.org/10.1080/17405629.2013.858626]
  • Park, H. S., & Smith, S. W. (2007). Distinctiveness and influence of subjective norms, personal descriptive and injunctive norms, and societal descriptive and injunctive norms on behavioral intent: A case of two behaviors critical to organ donation. Human Communication Research, 33(2), 194-218. [https://doi.org/10.1111/j.1468-2958.2007.00296.x]
  • Pennycook, G., Bear, A., Collins, E. T., & Rand, D. G. (2020). The implied truth effect: Attaching warnings to a subset of fake news headlines increases perceived accuracy of headlines without warnings. Management Science, 66(11), 4944-4957. [https://doi.org/10.1287/mnsc.2019.3478]
  • Pennycook, G., Epstein, Z., Mosleh, M., Arechar, A. A., Eckles, D., & Rand, D. G. (2021). Shifting attention to accuracy can reduce misinformation online. Nature, 592(7855), 590-595. [https://doi.org/10.1038/s41586-021-03344-2]
  • Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy nudge intervention. Psychological Science, 31(7), 770-780. [https://doi.org/10.1177/0956797620939054]
  • Pennycook, G., & Rand, D. G. (2022). Nudging social media toward accuracy. The AnnalS of the American Academy of Political and Social Science, 700(1), 152-164. [https://doi.org/10.1177/00027162221092342]
  • Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In R. E. Petty & J. T. Cacioppo (Eds.), Communication and persuasion: Central and peripheral routes to attitude change (pp. 1-24). New York, NY: Springer. [https://doi.org/10.1007/978-1-4612-4964-1_1]
  • Rains, S. A. (2013). The nature of psychological reactance revisited: A meta-analytic review. Human Communication Research, 39(1), 47-73. [https://doi.org/10.1111/j.1468-2958.2012.01443.x]
  • Rhodes, N., Shulman, H. C., & McClaran, N. (2020). Changing norms: A meta-analytic integration of research on social norms appeals. Human Communication Research, 46(2-3), 161-191. [https://doi.org/10.1093/hcr/hqz023]
  • Rim, H. B., & Lee, B.-K. (2019). The roles of the first reply: Predecisional information distortion of online replies. The Korean Journal of Advertising, 30(1), 7-27. [https://doi.org/10.14377/KJA.2019.1.15.7]
  • Sparkman, G., & Walton, G. M. (2017). Dynamic norms promote sustainable behavior, even if it is counternormative. Psychological Science, 28(11), 1663-1674. [https://doi.org/10.1177/0956797617719950]
  • Sparkman, G., Weitz, E., Robinson, T. N., Malhotra, N., & Walton, G. M. (2020). Developing a scalable dynamic norm menu-based intervention to reduce meat consumption. Sustainability, 12(6), 2453. [https://doi.org/10.3390/su12062453]
  • Woo, J., Lee, Y., Kim, S., Jeon, H., Eum, J., Song, H., … & Lee, J.-H. (2019). The effect of providing and receiving social support on guilt. Journal of The Korean Data Analysis Society, 21(6), 3207-3220. [https://doi.org/10.37727/jkdas.2019.21.6.3207]
  • Worchel, S., & Brehm, J. W. (1970). Effect of threats to attitudinal freedom as a function of agreement with the communicator. Journal of Personality and Social Psychology, 14(1), 18-22. [https://doi.org/10.1037/h0028620]
  • Yoon, G. (2022, July 4). The underlying meanings of the new word, ‘neutral gear’. Mediaus. Retrieved 12/16/22 from http://www.mediaus.co.kr/news/articleView.html?idxno=170722
  • Yoon, Y. (2022, February 9). ‘Cyber-wrecker’ caused the death of two young men… The law and YouTube’s policy do not apply. Chosun Biz. Retrieved 12/16/22 from https://biz.chosun.com/topics/topics_social/2022/02/09/PIZFMDHKVZEADODFHXE64R6C5U/
  • Yum, J.-Y., Kim, R., & Jeong, S.-H. (2020). A meta-analysis of the effects of user comments. Journal of Communication Research, 57(2), 5-49.

Appendix

부록 Ⅰ. 국내 참고 문헌

  • 권소영 (2022, 11, 24). 영남대, 정보 통신 기술 용어 순화어 50개 선정. <노컷뉴스>. Retrived 1/18/23 from https://www.nocutnews.co.kr/news/5854473
  • 김원정·한정호 (2016). 조직 위기상황 시 보도기사에 달린 댓글들이 조직 위기책임성과 구매의도에 미치는 영향. <광고학연구>, 27권 8호, 109-137.
  • 김재헌·원동희·차미영 (2020). 온라인 스트리밍 채팅 내 이모트가 포함된 혐오 표현 탐지: 딥러닝 모델을 기반으로, <정보과학회논문지>, 47권 11호, 1032-1037.
  • 김진영 (2022). 사회적 갈등이슈에 대한 댓글과 온라인 공론장 특성에 대한 연구: 뉴스 플랫폼 기업들의 과제. <기업과혁신연구>, 45권 3호, 181-196.
  • 엄기홍·김대식 (2021). 온라인 정치 여론 분석을 위한 댓글 분류기의 개발과 적용: KoBERT를 활용한 여론 분석. <한국정당학회보>, 20권 3호, 167-191.
  • 염정윤·김류원·정세훈 (2020). 국내 댓글 효과에 대한 메타 분석. <언론정보연구> 57권 2호, 5-49.
  • 우지민·이유나·김수민·전학영·음정호·송해리·김기호·이장한 (2019). 사회적 지지의 수혜 및 제공이 죄책감에 미치는 영향. <한국자료분석학회지>, 21권 6호, 3207-3220.
  • 윤광은 (2022, 7, 4). ‘중립 기어’라는 신조어는 무엇을 반영하나. <미디어스>. Retrieved 12/16/22 from http://www.mediaus.co.kr/news/articleView.html?idxno=170722
  • 윤예원 (2022, 2, 9). 95년생 두 청년 죽음으로 내몬 ‘사이버렉카’… 법은 멀고 유튜브는 뒷짐만. <조선비즈>. Retrieved 12/16/22 from https://biz.chosun.com/topics/topics_social/2022/02/09/PIZFMDHKVZEADODFHXE64R6C5U/
  • 이세영·박종민 (2020). 온라인 정책 기사에 대한 태도에 미치는 베스트 댓글의 방향성과 사회적 승인 강도의 영향성 연구: 휴리스틱-체계적(Heuristic-Systematic) 모델의 적용. <한국방송학보>, 34권 6호, 313-351.
  • 이신행 (2021). 편향적 인공지능: 네이버의 악플 탐지용 인공지능 ‘클린봇’이 판별한 혐오표현의 유형 분석. <사이버커뮤니케이션학보> 38권 4호, 33-75.
  • 이신행·이주연·조민정·박태강 (2022). 기계학습 기반 유튜브 악플 분석: “사이버렉카”에 달린 댓글의 어휘적 특성. <디지털콘텐츠학회논문지>, 23권 6호, 1115-1122.
  • 이은주 (2011). 지각된 편향인가 편향된 지각인가? 댓글의 내용, 여론에 대한 인식과 이슈 관여도에 따른 기사의 논조 지각. <한국언론학보>, 55권 3호, 179-198.
  • 임혜빈·이병관 (2019). 첫 댓글의 영향력: 온라인 뉴스 댓글에 대한 정보왜곡 효과 탐구. <광고학연구>, 30권 1호, 7-27.
  • 조화순·이병재·김승연 (2018). 인터넷 뉴스 댓글을 통한 정치커뮤니케이션. <한국정치학회보>, 52권 5호, 115-139.
  • 한국언론진흥재단 (2021). <2021 소셜미디어 이용자 조사>. Retrieved 12/16/22 from https://www.kpf.or.kr/front/research/consumerDetail.do?miv_pageNo=&miv_pageSize=&total_cnt=&LISTOP=&mode=W&seq=592324&link_g_topmenu_id=&link_g_submenu_id=&link_g_homepage=F&reg_stadt=&reg_enddt=&searchkey=all1&searchtxt=