Current issue

The Korean Society for Journalism & Communication Studies - Vol. 68 , No. 3

[ Article ]
Korean Journal of Journalism & Communication Studies - Vol. 68, No. 3, pp. 156-197
Abbreviation: KSJCS
ISSN: 2586-7369 (Online)
Print publication date 30 Jun 2024
Received 02 Feb 2024 Accepted 27 May 2024 Revised 29 May 2024
https://doi.org/10.20879/kjjcs.2024.68.3.005

청소년의 또래집단 규범이 비윤리적 행동 중단의도, 인공지능 챗봇에 대한 친밀감과 상호작용 만족도에 미치는 영향 : 메시지 프레임의 조절효과
박남기** ; 피연진 ; 이휘란 ; 이승희 ; 신제인
**연세대학교 언론홍보영상학부 교수 (npark@yonsei.ac.kr)
연세대학교 일반대학원 언론홍보영상학과 박사과정 학생
연세대학교 일반대학원 언론홍보영상학과 석사과정 학생
연세대학교 일반대학원 언론홍보영상학과 박사과정 학생
연세대학교 일반대학원 언론홍보영상학과 석사과정 학생

Effects of Adolescents’ Peer Group Norms on Intention to Stop Unethical Behaviors, Closeness to and Satisfaction with AI Chatbots : The Moderating Role of Message Framing
Namkee Park** ; Yunjin Pi ; Hwiran Lee ; Seunghee Lee ; Jane Shin
**Professor, Department of Communication, Yonsei University (npark@yonsei.ac.kr)
Doctoral Student, Department of Communication, Yonsei University
Master’s Student, Department of Communication, Yonsei University
Doctoral Student, Department of Communication, Yonsei University
Master’s Student, Department of Communication, Yonsei University
Funding Information ▼

초록

본 연구는 청소년의 또래집단 규범과 인공지능 챗봇 메시지 프레임이 비윤리적 행동 중단의도, 인공지능 챗봇에 대한 친밀감, 챗봇과의 상호작용에 대한 만족도에 미치는 영향을 분석함으로써 비윤리적 상황에서 인공지능 챗봇의 효과성을 탐구했다. 이를 위해 3(비윤리적 행동에 대한 또래집단 규범: 찬성 vs. 반대 vs. 특별한 의견 없음) x 2(메시지 프레임: 긍정 vs. 부정)의 개체 간 요인설계를 바탕으로 만 13-18세 청소년을 대상으로 두 가지 온라인 실험을 수행하였다. 각 실험의 참여자는 여섯 개의 실험조건 중 하나에 무작위로 배치되었다. 분석 결과, 비윤리적 행동에 대한 또래집단 규범이 반대일 경우, 챗봇에 대한 친밀감이 높게 나타났으나 비윤리적 행동 중단의도와 챗봇과의 상호작용에 대한 만족도는 유의미한 차이를 보이지 않았다. 메시지 프레임의 경우, 부정 프레임 메시지에서 챗봇에 대한 친밀감과 상호작용에 대한 만족도가 높았다. 한편, 비윤리적 행동에 대한 또래집단 규범과 인공지능 챗봇 메시지 프레임의 상호작용 효과는 유의미하지 않은 것으로 나타났다. 본 연구는 윤리적 관점에서 청소년의 도덕적 의사결정과 태도 형성에 인공지능 챗봇이 긍정적인 영향을 미칠 수 있음을 실증적으로 살펴보았다는 점에서 의의가 있다. 또한, 윤리적 가치와 태도 교육에 있어 인공지능 챗봇의 활용 가능성을 시사한다.

Abstract

Given that the interactions between humans and artificial intelligence (AI), particularly the use of AI chatbots by adolescents, are increasing, it is necessary to discuss related ethical issues. For instance, adolescents are highly likely to be exposed to socially undesirable language use online, and AI chatbots can easily learn users’ language use. Thus, adolescents’ use of AI chatbots may lead to ethically problematic issues. However, empirical studies that have investigated ethical issues in the context of adolescents and AI chatbot interactions are limited. The present study examined how the interactions between adolescents and AI chatbots were conducted when they were in unethical situations, and how the persuasive effects of AI chatbots worked in such situations. Specifically, the present study examined how adolescents' peer group norms and message framing influenced their intention to stop unethical behaviors, their sense of closeness to AI chatbots, and their satisfaction with AI chatbots. A 3 (peer group norms toward an unethical behavior: agree vs. disagree vs. no specific opinion) x 2 (message framing: positive vs. negative) factorial design was utilized in two separate online experiments with South Korean adolescents aged 13-18. The scenarios presented to the participants involved unethical situations such as online course auto-enrollment or unauthorized absenteeism, thereby simulating real-life experiences that adolescents may frequently encounter. Results showed that closeness to an AI chatbot was highest when the AI chatbot had an opposite opinion to peer group norms. However, intention to stop unethical behaviors and satisfaction with the AI chatbot based on peer group norms did not present significant differences. In terms of message framing, negative framing in the AI chatbot’s communication led to higher levels of both chatbot closeness and interaction satisfaction with the AI chatbot. In addition, the interaction effect between peer group norms toward the unethical behaviors and AI chatbot message framing was not significant. The importance of the present study lies in its empirical examination of how AI chatbots can positively affect adolescents’ moral reasoning and attitude development from an ethical standpoint. By demonstrating the nuanced ways in which AI chatbots can shape the ethical landscapes of young minds, the study contributes to understanding of adolescents-AI chatbot interaction. It also suggests the potential of AI chatbots in ethical education, providing vital clues on how AI chatbots can effectively enhance ethical values and attitudes among adolescents. The present study also offers practical implications in the area of educational AI chatbot, offering possible ways to employ AI chatbots for promoting ethical education.


KeywordsAI Chatbot, AI Ethics, Peer Group Norms, Message Framing
키워드: 인공지능 챗봇, 인공지능 윤리, 또래집단 규범, 메시지 프레이밍

Acknowledgments

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of the Republic of Korea(본 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임)[NRF-2021S1A5A2A0107008612].


References
1. Ahn, H., & Lee, S. (2020). Relative persuasive effects of gain/loss framing in messages to help poorly-fed children. Korean Journal of Broadcasting and Telecommunication Studies, 34(5), 78-107.
안혜영·이승조 (2020). 결식아동 돕기를 촉구하는 메시지에서 나타나는 이익/손실 프레이밍의 상대적 설득 효과. <한국방송학보>, 34권 5호, 78-107.
2. Ahn, Y., Zhang, Y., Park, Y., & Lee, J. (2020, April). A chatbot solution to chat app problems: Envisioning a chatbot counseling system for teenage victims of online sexual exploitation. Paper presented at the CHI Conference on Human Factors in Computing Systems, Honolulu, HI.
3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
4. Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261-277.
5. Akerlof, G. A. (1997). Social distance and social decisions. Econometrica, 65(5), 1005-1027.
6. Baumgartner, S. E., Valkenburg, P. M., & Peter, J. (2011). The influence of descriptive and injunctive peer norms on adolescents’ risky sexual online behavior. Cyberpsychology, Behavior, and Social Networking, 14(12), 753-758.
7. Berkowitz, A. D. (2005). An overview of the social norms approach: Changing the culture of college drinking. In L. P. Lederman & L. P. Stewart (Eds.), Challenging the culture of college drinking: A socially situated health communication campaign (pp. 193-214). New York, NY: Hampton Press.
8. Berndt, T. J. (1979). Developmental changes in conformity to peers and parents. Developmental Psychology, 15(6), 608-616.
9. Blader, S. L., & Tyler, T. R. (2009). Testing and extending the qroup engagement model: Linkages between social identity, procedural justice, economic outcomes, and extrarole behavior. Journal of Applied Psychology, 94(2), 445-464.
10. Brown, B. B., Clasen, D. R., & Eicher, S. A. (1986). Perceptions of peer pressure, peer conformity dispositions, and self-reported behavior among adolescents. Developmental Psychology, 22(4), 521-530.
11. Byrne, D. (1997). An overview (and underview) of research and theory within the attraction paradigm. Journal of Social and Personal Relationships, 14(3), 417-431.
12. Cairns, R., B., & Cairns, B. D. (1994). Lifelines and risk: Pathways of youth in our time. New York, NY: Cambridge University Press.
13. Cesario, J., Grant, H., & Higgins, E. T. (2004). Regulatory fit and persuasion: Transfer from “feeling right”. Journal of Personality and Social Psychology, 86(3), 388-404.
14. Chaiken, S., & Maheswaran, D. (1994). Heuristic processing can bias systematic processing: Effects of source credibility, argument ambiguity, and task importance on attitude judgment. Journal of Personality and Social Psychology, 66(3), 460-473.
15. Choi, E., & Park, N. (2023). The effect of AI customization on chatbot users’ intentions to stop using offensive language and to continue to use AI chatbot: The mediating role of psychological reactance. Korean Journal of Journalism & Communication Studies, 67(2), 5-45.

최어진·박남기 (2023). 인공지능 맞춤화가 챗봇 이용자의 욕설 사용 중단의도와 챗봇 지속이용의도에 미치는 영향: 심리적 반발의 매개효과. <한국언론학보>, 67권 2호, 5-45.
16. Choi, J. (2013). The impacts of consumers’ regulatory focus on the adoption of means for goal achievement. Journal of Marketing Studies, 21(2), 45-58.
최진명 (2013). 조절초점 동기가 의사결정의 수단 선택에 미치는 영향. <마케팅논집>, 21권 2호, 34-58.
17. Clasen, D. R., & Brown, B. B. (1985). The multidimensionality of peer pressure in adolescence. Journal of Youth and Adolescence, 14(6), 451-468.
18. Cowley, E., & Mitchell, A. A. (2003). The moderating effect of product knowledge on the learning and organization of product information. Journal of Consumer Research, 30(3), 443-454.
19. Crutzen, R., Peters, G. J. Y., Portugal, S. D., Fisser, E. M., & Grolleman, J. J. (2011). An artificially intelligent chat agent that answers adolescents’ questions related to sex, drugs, and alcohol: An exploratory study. Journal of Adolescent Health, 48(5), 514-519.
20. Erlandsson, A., Nilsson, A., & Västfjäll, D. (2018). Attitudes and donation behavior when reading positive and negative charity appeals. Journal of Nonprofit & Public Sector Marketing, 30(4), 444-474.
21. Grove, C. (2021). Co-developing a mental health and wellbeing chatbot with and for young people. Frontiers in Psychiatry, 11, 606041.
22. Han, D. (2021). An analysis of Korean EFL learners’ experience on English classes using AI chatbot. Robotics & AI Ethics, 6(3), 1-9.
23. Hertel, G., & Kerr, N. L. (2001). Priming in group favoritism: The impact of normative scripts in the minimal group paradigm. Journal of Experimental Social Psychology, 37(4), 316-324.
24. Higgins, E. T. (1998). Promotion and prevention: Regulatory focus as a motivational principle. Advances in Experimental Social Psychology, 30, 1-46.
25. Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real conversations with artificial intelligence: A comparison between human-human online conversations and human-chatbot conversations. Computers in Human Behavior, 49, 245-250.
26. Hogg, M. A., & Reid, S. A. (2006). Social identity, self-categorization, and the communication of group norms. Communication Theory, 16(1), 7-30.
27. Hong, S. M., & Faedda, S. (1996). Refinement of the Hong psychological reactance scale. Educational and Psychological Measurement, 56(1), 173-182.
28. Jeong, I. (2019). The influence of norms in social media on the recognition of offline norms. Korean Journal of Journalism & Communication Studies, 63(4), 123-158.

정일권 (2019). 소셜미디어에서의 직·간접적 탈규범 경험이 청소년의 사회규범 인식에 미치는 영향. <한국언론학보>, 63권 4호, 123-158.
29. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291.
30. Kang, Y., & Choi, S. (2016). The message framing effect on visitors’ environmentally responsible behavior: Focus on regulatory focus. The Tourism Sciences Society of Korea, 40(5), 217-232.

강영애·최승담 (2016). 메시지 프레이밍이 환경적으로 책임 있는 방문객 행동에 미치는 영향: 조절초점을 중심으로. <관광학연구>, 40권 5호, 217-232.
31. Kang, Y., Jang, Y., Bae, S., & Hong, S. (2021). A meta-analysis of the effects of artificial intelligence education programs on adolescents. Journal of Korean Association for Educational Information and Media, 27(4), 1273-1294.

강윤경·장유나·배상영·홍세희 (2021). 인공지능 교육프로그램이 청소년에게 미치는 효과 연구에 대한 메타분석. <교육정보미디어연구>, 27권 4호, 1273-1294.
32. Kim, S., & Yu, M. (2010). Effects of message framing on the advertising effectiveness: Moderating role of regulatory focus and product type. The Journal of Korea Content Association, 10(8), 177-185.

김성재·유명길 (2010). 메시지 프레이밍이 광고효과에 미치는 영향: 조절초점과 제품유형의 조절효과. <한국콘텐츠학회논문지>, 10권 8호, 177-185.
33. Kim, T., & Yoon, S. (2022). A study on drinking temperance intention and drinking culture of Korean high school students based upon the Theory of Reasoned Action (TRA): Focused on the comparison of different school characteristics. Journal of Cultural Industry Studies, 22(1), 49-65.

김태경·윤성준 (2022). 합리적행위이론(TRA)을 적용한 한국 고등학생들의 음주절제의도와 음주문화에 관한 연구: 학교 특성 간 차이 비교를 중심으로. <문화산업연구>, 22권 1호, 49-65.
34. Kim, Y. (2024, March 25). Obscene AI chatbots exposed to adolescents. The Seoul Shinmun Daily. Retrieved 5/16/24 from https://www.seoul.co.kr/news/society/2024/03/25/20240325001005
김예슬 (2024, 3, 25). 음란 AI 챗봇, 청소년에 무방비 노출. <서울신문>.
35. Koo, M. (2022, October 20). Ministry of Gender Equality and Family operates ‘Youth self-counseling’ online content ‘Solrobot’. Newsis. Retrieved 1/3/24 from https://mobile.newsis.com/view.html?ar_id=NISX20221019_0002053968
구무서 (2022, 10, 20). 여가부, ‘청소년 자가상담’ 온라인 콘텐츠 솔로봇 운영. <뉴시스>.
36. Kooli, C. (2023). Artificial Intelligence Dissociative Identity Disorder (AIDIS): The dark side of ChatGPT. QScience Connect, 2023(2), 2.
37. Kühberger, A. (1998). The influence of framing on risky decisions: A meta-analysis. Organizational Behavior and Human Decision Processes, 75(1), 23-55.
38. Kwon, B. (2022). Differences in the intention of elementary school students for eco-friendly behavior according to message endings and sources: Focused on zero waste. Unpublished doctoral dissertation, Seoul National University, Seoul, Korea.
권보경 (2022). <메시지 어미와 정보 전달자에 따른 초등학생의 친환경 행동 의도 차이: 제로웨이스트를 중심으로>. 서울대학교 대학원 박사학위 논문.
39. Lally, P., Bartle, N., & Wardle, J. (2011). Social norms and diet in adolescents. Appetite, 57(3), 623-627.
40. Lee, B., & Yoon, T. (2012). A study on the framing effect in public service advertising a meta-analysis. The Korean Journal of Advertising and Public Relations, 14(2), 33-60.
이병관·윤태웅 (2012). 공익광고의 프레이밍 효과에 관한 연구 메타 분석. <한국광고홍보학보>, 14권 2호, 33-60.
41. Lee, D., & Kim, H. (2023). Effects of youth-targeted antismoking public service announcements: The moderating role of a sense of belonging to a peer group in persuasion and priming effects. Journal of Communication Research, 60(2), 5-46.
이다은·김현석 (2023). 청소년 흡연 예방 공익광고의 설득 및 점화 효과: 친구집단 소속감의 조절 역할. <언론정보연구>, 60권 2호, 5-46.
42. Lee, J. (2010). Message structure of persuasive storytelling in travel guide booklets of great Chungchung visit year. Journal of the Korean Content Association, 10(11), 380-390.

이정헌 (2010). 관광안내서의 스토리텔링적 방문 설득 메시지 구조: 대충청 방문의 해 공식 안내서를 중심으로. <한국콘텐츠학회논문지>, 10권 11호, 380-390.
43. Lee, J. (2021, May 4). “If you’re depressed, talk to ‘Ash’”...‘Chatbot’ preventing adolescent suicide. EBS News. Retrieved 7/3/23 from https://post.naver.com/viewer/postView.nhn?volumeNo=31420204&memberNo=10234477&vType=VERTICAL
이지예 (2021, 5, 4). “우울하다면 ‘애쉬’에게 말을 거세요”...청소년 자살 막는 ‘챗봇’. <EBS뉴스>.
44. Lee, M., & Kim, J. (2020). A study on the teaching of digital literacy in the AI age: Focused on Berkman Klein Center education. Cartoon and Animation Studies, 59, 533-555.

이문형·김재웅 (2020). AI시대의 청소년 디지털 리터러시 교육 연구: Berkman Klein Center 교육을 중심으로. <만화애니메이션 연구>, 59호, 533-555.
45. Lee, S. (2017). The influence of adolescents’ sensation seeking and peer conformity on cyberbullying: Mediation effect of anonymity. Unpublished doctoral dissertation, Daegu Haany University, Gyeongsan, Korea.
이수봉 (2017). <청소년의 감각추구 성향과 또래 동조성이 사이버불링에 미치는 영향: 익명성의 매개효과>. 대구한의대학교 대학원 박사학위 논문.
46. Lee, S., Lee, N., & Sah, Y. J. (2020). Perceiving a mind in a chatbot: Effect of mind perception and social cues on co-presence, closeness, and intention to use. International Journal of Human-Computer Interaction, 36(10), 930-940.
47. Levin, I. P., Schneider, S. L., & Gaeth, G. J. (1998). All frames are not created equal: A typology and critical analysis of framing effects. Organizational Behavior and Human Decision Processes, 76(2), 149-188.
48. Lin, M. P.-C., & Chang, D. (2020). Enhancing post-secondary writers' writing skills with a chatbot: A mixed-method classroom study. Journal of Educational Technology & Society, 23(1), 78-92.
49. Mariamo, A., Temcheff, C. E., Léger, P. M., Senecal, S., & Lau, M. A. (2021). Emotional reactions and likelihood of response to questions designed for a mental health chatbot among adolescents: Experimental study. JMIR Human Factors, 8(1), e24343.
50. Moon, C. (2008). Approach of storytelling skill to the product design education focused on marketing. Journal of Product Research, 26(4), 25-35.

문찬 (2008). 스토리텔링 기법을 적용한 마케팅 중심의 제품디자인 교육. <상품학연구>, 26권 4호, 25-35.
51. Muhammad, A. Q., Jiang, Y. A., Shubin, Y. R., & Sandra, M. C. (2020). I, chat-bot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 22(1), 101-113.
52. Nam, M., & Cho, M. (2012). The influence of restaurant customers’ chronic regulatory focus, message framing, and situational involvement on visit intention. Journal of Tourism Studies, 24(4), 41-67.
남민정·조민호 (2012). 외식고객의 성향적 조절초점, 메시지틀 및 관여도가 레스토랑 방문의도에 미치는 영향. <관광연구논총>, 24권 4호, 41-67.
53. Nan, X. (2007). Social distance, framing, and judgment: A construal level perspective. Human Communication Research, 33(4), 489-514.
54. Nesi, J., Rothenberg, W. A., Hussong, A. M., & Jackson, K. M. (2017). Friends’ alcohol-related social networking site activity predicts escalations in adolescent drinking: Mediation by peer norms. Journal of Adolescent Health, 60(6), 641-647.
55. Norton, J., & Crowson, I. (2024, January 6). Father of Molly Russell warns parents to beware of character: AI chatbot that ‘mocks’ young people with depressive thoughts. Daily Mail. Retrieved 2/1/24 from https://www.dailymail.co.uk/news/article-12934029/Father-Molly-Russell-warns-parents-beware-Character-AI-chatbot-mocks-young-people-depressive-thoughts.html
56. O’Keefe, D. J., & Jensen, J. D. (2009). The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease detection behaviors: A meta-analytic review. Journal of Communication, 59(2), 296-316.
57. Oh, A., Lee, H., & Kim, H. (2019). The effectiveness of suicide prevention campaign for adolescents by message framing and content types. Advertising Research, 122, 35-70.

오아름·이현진·김활빈 (2019). 메시지 프레이밍과 콘텐츠 유형에 따른 청소년 자살 예방 캠페인 효과에 관한 연구. <광고연구>, 122권, 35-70.
58. Park, H. (2014). Communication message strategy to promote disease prevention behavior: The effects of temporal distance, social distance and gain-loss frame in the cervical cancer. Korean Journal of Journalism & Communication Studies, 58(3), 344-377.
박현정 (2014). 질병 예방행동 촉진을 위한 커뮤니케이션 메시지 전략 연구: 자궁경부암에서 심리적 거리, 해석수준, 이득-손실 프레임을 중심으로. <한국언론학보>, 58권 3호, 344-377.
59. Park, H. S., & Smith, S. W. (2007). Distinctiveness and influence of subjective norms, personal descriptive and injunctive norms, and societal descriptive and injunctive norms on behavioral intent: A case of two behaviors critical to organ donation. Human Communication Research, 33(2), 194-218.
60. Park, H., Deguchi, T., & Yoshida, T., (2007). The effects of self-norms and consciousness peer group norms on individual behavior at class adaptation. Korean Journal of Social and Personality Psychology, 21(3), 13-25.

박현정·타쿠히코 데구치·토시카츠 요시다 (2007). 학급 적응감에 있어서 규범의식이 행동에 미치는 영향: 교사의 학생지도유형을 중심으로. <한국심리학회지: 사회 및 성격>, 21권 3호, 13-25.
61. Park, N. (2020). Artificial intelligence and ethical issues. Journal of Communication Research, 57(3), 122-154.
박남기 (2020). 인공지능과 윤리적 이슈. <언론정보연구>, 57권 3호, 122-154.
62. Park, N., Jung, Y., & Lee, K. M. (2011). Intention to upload video content on the internet: The role of social norms and ego-involvement. Computers in Human Behavior, 27(5), 1996-2004.
63. Parks, M. R., & Floyd, K. (1996). Meanings for closeness and intimacy in friendship. Journal of Social and Personal Relationships, 13(1), 85-107.
64. Pedersen, E. R., Osilla, K. C., Miles, J. N., Tucker, J. S., Ewing, B. A., Shih, R. A., & D’Amico, E. J. (2017). The role of perceived injunctive alcohol norms in adolescent drinking behavior. Addictive Behaviors, 67, 1-7.
65. Portela, M., & Granell-Canut, C. (2017, September). A new friend in our smartphone?: Observing interactions with chatbots in the search of emotional engagement. Paper presented at the XVIII International Conference on Human Computer Interaction, Cancun, Mexico.
66. Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people. Stanford, CA: CSLI Publications.
67. Rothman, A. J., & Salovey, P. (1997). Shaping perceptions to motivate healthy behavior: The role of message framing. Psychological Bulletin, 121(1), 3-19.
68. Santor, D. A., Messervey, D., & Kusumakar, V. (2000). Measuring peer pressure, popularity, and conformity in adolescent boys and girls: Predicting school performance, sexual attitudes, and substance abuse. Journal of Youth and Adolescence, 29(2), 163-182.
69. Sasson, H., & Mesch, G. (2014). Parental mediation, peer norms and risky online behavior among adolescents. Computers in Human Behavior, 33, 32-38.
70. Seo, J., Lee, J., & Park, M. (2011). High school strudents’ buying attitudes toward school uniform brands according to clothing conformity. The Research Journal of the Custume Culture, 19(6), 1320-1333.

서지민·이지연·박명자 (2011). 중, 고등학생의 의복 동조 성향에 따른 교복 브랜드에 대한 태도와 구매행동. <복식문화연구>, 19권 6호, 1320-1333.
71. Shu, S., & Choi, Y. (2018). The effects of message framing and evidence type on obesity prevention for chinese adolescents. Journal of the Korea Content Association, 18(3), 626-635.
서소상·최유진 (2018). 메시지 프레이밍과 증거 유형에 따른 중국 청소년 비만 예방 메시지 효과. <한국콘텐츠학회논문지>, 18권 3호, 626-635.
72. Steinberg, L., & Morris, A. S. (2001). Adolescent development. Journal of Cognitive Education and Psychology, 2(1), 55-87.
73. Sung, M. (2023, June 1). While parents worry, teens are bullying Snapchat AI. Tech Crunch. Retrieved 1/29/24 from https://techcrunch.com/2023/05/31/people-keep-gaslighting-snapchat-my-ai/
74. Tsai, W. H. S., Liu, Y., & Chuan, C. H. (2021). How chatbots’ social presence communication enhances consumer engagement: The mediating role of parasocial interaction and dialogue. Journal of Research in Interactive Marketing, 15(3), 460-482.
75. Wang, H., Gupta, S., Singhal, A., Muttreja, P., Singh, S., Sharma, P., & Piterova, A. (2022). An artificial intelligence chatbot for young people’s sexual and reproductive health in India (SnehAI): Instrumental case study. Journal of Medical Internet Research, 24(1), e29969.
76. Xie, Y., Zhu, K., Zhou, P., & Liang, C. (2023). How does anthropomorphism improve human-AI interaction satisfaction: A dual-path model. Computer in Human Behavior, 148, 107878.
77. Yang, M., & Kang, H. (2011). A study on the actual conditions of abusive language used by juveniles and juveniles’ attitude towards using abusive language. Eomunhak, 111, 57-87.
양명희·강희숙 (2011). 초·중·고 학생들의 욕설 사용 실태와 태도에 대한 연구. <어문학>, 111권, 57-87.
78. Yanovitzky, I., Stewart, L. P., & Lederman, L. C. (2006). Social distance, perceived drinking by peers, and alcohol use by college students. Health Communication, 19(1), 1-10.
79. Zhang, S., Shan, C., Lee, J. S. Y., Che, S., & Kim, J. H. (2023). Effect of chatbot-assisted language learning: A meta-analysis. Education and Information Technologies, 28(11), 15223-15243.
80. Zogaj, A., Mähner, P. M., Yang, L., & Tscheulin, D. K. (2023). It’s a match! The effects of chatbot anthropomorphization and chatbot gender on consumer behavior. Journal of Business Research, 155, 113412.