The Korean Society for Journalism & Communication Studies (KSJCS)
[ Article ]
Korean Journal of Journalism & Communication Studies - Vol. 65, No. 1, pp.148-189
ISSN: 2586-7369 (Online)
Print publication date 28 Feb 2021
Received 26 Sep 2020 Revised 29 Jan 2021 Accepted 05 Feb 2021
DOI: https://doi.org/10.20879/kjjcs.2021.65.1.148

코로나19 언론보도 경향에 대한 빅데이터 분석 : 이슈 주기 및 언론사 정치적 지향에 따른 주제 분석과 언어 네트워크 분석 적용

함승경* ; 김혜정** ; 김영욱***
*이화여자대학교 커뮤니케이션 미디어학부 강사 hamseungkyung@gmail.com
**이화여자대학교 커뮤니케이션 미디어학부 박사과정 leslie1982hj@gmail.com
***이화여자대학교 커뮤니케이션 미디어학부 교수 kimyw@ewha.ac.kr
A Big-Data Analysis of Media Coverage on COVID-19 : Topic Modeling and Semantic Network Analyses by Issue Cycle and Political Orientation
Seungkyung Ham* ; Hyejung Kim** ; Yungwook Kim***
*Lecturer, Ewha Womans University hamseungkyung@gmail.com
**Doctoral Student, Ewha Womans University leslie1982hj@gmail.com
***Professor, Ewha Womans University, corresponding author kimyw@ewha.ac.kr

초록

이 연구는 코로나19 1차 유행기에 생산된 코로나19 언론보도 빅데이터 분석을 통해 코로나19 감염 위기가 어떻게 구성되었고, 이슈 발전 단계에 따라 어떤 주제들이 논의되었는지, 그리고 이러한 논의에 언론사들의 정치적 지향에 따른 영향은 없었는지, 마지막으로 언론보도가 구성한 가장 핵심적인 의미는 무엇이었는지를 분석했다. 이를 위해, 코로나19를 키워드로 5개 일간지의 총 49,552건 기사를 수집하였고, 이슈 주기에 따른 5개 시기로 구분해서 토픽모델링과 언어 네트워크 분석을 실시하였다. 분석 결과, ‘정부대응’, ‘개인방역, ’경제위기‘, ’정부지원‘, ’해외상황‘ 등 10개 주제가 도출되었다. 이슈 주기별로 구성된 10개 의제는 언론사의 정치적 지향에 따라 집중도가 다르게 나타났다. 구체적으로, 보수 언론은 상대적으로 임박과 발생 단계에서는 책임, 방역 의제에 집중하였고, 절정과 동면 단계에서는 방역, 경제, 정치 의제에 집중하였다. 반면, 진보 언론은 상대적으로 임박과 발생 단계에서는 경제위기, 정치에 집중하였고, 절정과 동면 단계에서는 재정지원, 정부대응 의제에 집중한 경향을 보였다. 그리고 시기별 핵심 의미를 분석한 결과, 동면 시기를 제외하고는 시기와 언론사 정치적 지향에 따른 핵심 의미의 차이가 나타나지 않고, 대응과 방역으로 수렴하였다. 결론적으로, 코로나19에 대한 언론보도의 의제는 이슈 주기와 언론사의 정치적 지향에 따른 차이가 발견되었지만, 핵심적인 개념들의 의미 관계에서는 마지막 단계를 제외하고 언론사의 정치적 지향에 따른 차이를 발견할 수 없었다. 이는 팬데믹의 충격이 공론장에 전달되어 다양한 의제들이 존재함에도 불구하고, 대응과 방역 의제로 수렴됨으로써 지배적인 의미를 가졌다고 해석할 수 있다. 더불어, 이러한 연구 결과가 시사하는 바를 위험 커뮤니케이션 관점에서 논의했다.

Abstract

This study examined how the media construct topics about the COVID-19 pandemic and the differences among topics covered by issue development cycle and political orientation of newspapers. Moreover, the current study investigated the most important meaning that media coverage delivers. To this end, we collected a total of 49,552 articles from five daily newspapers published during the first phase of the pandemic, from December 20, 2019 to May 20, 2020, using the keyword COVID-19. The period was divided into five phases according to the issue cycle: potential, imminent, current, critical, and dormant. Topic modeling and semantic network analyses were used to extract topics and key meanings from the articles. Topic modeling analyses yielded a total of 10 topics: economic crisis, personal prevention, governmental response, political reaction, governmental support, changes in daily life, infectious disease research, regional quarantine, overseas situation, and exchange lockdown. Theses 10 topics showed different concentrations in each phase depending on the political orientation of newspapers. Specifically, conservative newspapers focused on responsibility and quarantine agendas during the imminent and the current phases, and on quarantine, economic, and political agendas during the critical and the dormant phases. On the other hand, progressive newspapers tended to concentrate on economic crisis and political agendas during the imminent and the current phases, and on financial support and governmental response agendas during the critical and the dormant phases. Semantic network analyses found that other than the dormant phase, there was no difference in the focal meanings of each phase regardless of the issue cycle and the political orientation of newspapers: The focal meanings converged to response and quarantine. Specifically, these meanings are mainly related to the number of confirmed cases, isolation and treatment issues, and regional and individual quarantine. In conclusion, the agendas that media construct in dealing with COVID-19 were found to be different by the issue cycle and the political orientation of newspapers, but in terms of semantic relationships of the focal meanings, no difference was found across political orientation of newspapers throughout all phases except for the last dormant phase. The results suggest that the focal meanings which newspapers consider most important in the COVID-19 crisis converged to response and quarantine, despite the presence of various agendas brought about by the shock of the global pandemic. Further findings and implications are discussed from the perspective of risk communication.

Keywords:

COVID-19, Issue Cycle, Political Orientation, Topic Modeling, Semantic Network Anlaysis

키워드:

코로나19, 토픽모델링, 언어 네트워크, 이슈 주기, 정치적 지향

References

  • Agha, S. (2003). The impact of a mass media campaign on personal risk perception, perceived self-efficacy and on other behavioural predictors. Aids Care, 15(6), 749-762. [https://doi.org/10.1080/09540120310001618603]
  • Artero, J. P., & for the Study of Journalism, R. I. (2015). Political parallelism and media coalitions in Western Europe.
  • Berger, P., & Luckman, T. (1991). The social construction of reality. Harmondsworth, UK: Penguin Books.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I.. (2003). Latent dirichlet allocation. Journal of machine learning research, 3, 993-1022.
  • Cho, J. H., & Cho, I. H. (2019). Exploration of online issues about re-influx of MERS virus in Korea 2018: Investigation through topic modeling analysis & emotion. Journal of Digital Contents Society, 20(5), 1051-1060. [https://doi.org/10.9728/dcs.2019.20.5.1051]
  • Covello, V. T., Winterfeldt, D., & Slovic, P. (1986). Risk communication: A review of the literature. Risk Abstracts, 3, 171-182.
  • Crable, R. E., & Vibbert, S. L. (1985). Managing issues and influencing public policy. Public Relations Review, 11(2), 3-16. [https://doi.org/10.1016/S0363-8111(82)80114-8]
  • Glik, D. (2007). Risk communication for public health emergencies. Annual Review of Public Health, 28, 33-54. [https://doi.org/10.1146/annurev.publhealth.28.021406.144123]
  • Hall, S. (1982). Culture, society and the media-3 The rediscovery of ‘ideology’: Return of the repressed in media studies, Methuen & Co.
  • Hallin, D. C., & Mancini, P. (2004). Comparing Media Systems: Three Models of Media and Politics. UK: Cambridge University Press. [https://doi.org/10.1017/CBO9780511790867]
  • Hansen, D., Shneiderman, B., & Smith, M. A. (2011). Analyzing social media networks with NodeXL: Insights from a connected world. Boston: Elsevier. [https://doi.org/10.1016/B978-0-12-382229-1.00002-3]
  • Hong, J. H. & Son, Y. J. (2017). Korean media partisnship in the report on THAAD rumor: Network and frame analysis. Korean Journal of Communication and Information, 84, 152-188. [https://doi.org/10.46407/kjci.2017.08.84.152]
  • Hwang, S. W., & Lee, B. H. (2010). Framing of low-birth rate issue: Comparing the frames of conservative and progressive newspapers. Korean Journal of Communication Studies, 18(2), 27-58.
  • Jeon, Y. O. (2005). A comparative study on presentation and abstract of the presentation. Journal of Textliguistic, 19, 209-246.
  • Jin, N. Y., & Chung, C. J. (2018). Semantic network analysis of domestic and overseas media coverage regarding Korea MERS. Journal of Communication Science, 18(2), 222-262. [https://doi.org/10.14696/jcs.2018.06.18.2.222]
  • Kapuscinski, G., & Richards, B. (2016). News framing effects on destination risk perception. Tourism Management, 57, 234-244. [https://doi.org/10.1016/j.tourman.2016.06.017]
  • Kim, C. S., & Kim, K, K. (2015). An analysis of frame in conservative presses and progressive presses with emphasis on the reported articles of cyber smears. Journal of Social Science, 22(4), 279-310.
  • Kim, N. S. (2020). COVID-19 pandemic and challenge [On-Line]. Health Issue & Focus, 373. Retrieved from https://www.kihasa.re.kr/web/publication/periodical/issue_view
  • Kim, T. J. (2020). COVID-19 news analysis using news big data: Focusing on topic modeling analysis. Journal of the Korea Contents Association, 20(5), 457-466.
  • Kim, Y. (2016). An essay on Korean media’s coverage of Middle East Respiratory Syndrome Coronavirus. Korean Journal of Health Communication, 11(1), 39-50. [https://doi.org/10.15715/kjhcom.2016.11.1.39]
  • Kim, Y. R. (2020). The current status and improvement of regulations on reporting infectious diseases. [On-Line]. Issue and Focus, 1665. Retrieved 2/7/21 from https://www.nars.go.kr/report/view.do?cmsCode=CM0018&brdSeq=27538
  • Kim, Y. W. (2006). Risk society and risk communication: Reflexivity on Risk and the need of communication. Communication Theories, 2(2), 192-232.
  • Ko, Y. S. (2007). An analysis of news reports about the scandals of the presidents’ relatives and in-laws: A news frame approach. Korean Journal of Communication Studies, 3(1), 156-196.
  • Korea Research (2020. 6. 3). 8th Survey on COVID-19 (situation perception, reliability on public agency, and so on). URL: https://hrcopinion.co.kr/archives/15662
  • Kwon, H. C. (2016). A study of semantic network analysis of newspaper articles on MERS situation: Comparing conservative and progressive news media. Korean Journal of Health Communication 11(1), 63-80. [https://doi.org/10.15715/kjhcom.2016.11.1.63]
  • Lee, H. M., Kim, H. Y., & Ryu, S. H. (2016). A study on ideological orientation and the construction of news about Korean news media: Focused on a semantic network analysis for articles about ‘Bernie Sanders’. Journal of the Korea Contents Association, 16(8), 180-191. [https://doi.org/10.5392/JKCA.2016.16.08.180]
  • Lee, J. R., & Ahn, B. K. (2010). A study on the discourse formation structue represented in Korean newspaper editorials dealing with the influenza A (H1N1) virus: Focusing on editorial in Chosun-Ilbo and Hankyoreh. Health Communication Research, 2(1), 1-29,
  • Lee, M. N., & Hong, J. H. (2016). Semantic network analysis of government’s crisis communication messages during the MERS outbreak. Journal of the Korea Contents Association,16(5), 124-136. [https://doi.org/10.5392/JKCA.2016.16.05.124]
  • Lee, S. S. (2014). A content analysis of journal articles using the language network analysis methods. Journal of the Korean Society for Information Management, 31(4), 49-68. [https://doi.org/10.3743/KOSIM.2014.31.4.049]
  • Lenci, A. (2008). Distributional semantics in linguistic and cognitive research. Rivista Di Linguistica, 20(1), 1–31.
  • Lowrey, W., Gower, K., Evans, W., & Mackay, J. (2006). Assessing newspaper preparedness for public health emergencies. Journalism and Mass Communication Quarterly, 83, 362-380. [https://doi.org/10.1177/107769900608300209]
  • Maier, D., Waldherr, A., Miltner, P., Jähnichen, P., & Pfetsch, B. (2017). Exploring issues in a networked public sphere: Combining hyperlink network analysis and topic modeling. Social Science Computer Review, Advance online publication. doi:10.1177/0894439317690337 [https://doi.org/10.1177/0894439317690337]
  • Miller, M. A., Viboud, C., Balinska, M., & Simonsen, L. (2009). The signature features of influenza pandemics—implications for policy. New England Journal of Medicine, 360(25), 2595-2598. [https://doi.org/10.1056/NEJMp0903906]
  • Mimno, D., Wallach, H. M., Talley, E., Leenders, M., & McCallum, A. (2011). Optimizing semantic coherence in topic models. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 262–272.
  • Nam. I. Y., & Park. H. W. (2007). Network Analysis of Headlines in the Newspaper Articles on the Prospective Presidential Candidates and their PR Strategy in Korea. Journal of Korean Partystudies, 6(1), 79-107.
  • Nystrom, P. C., & Starbuck, W. H. (1984). Managing beliefs in organizations. Journal of Applied Behavioral Science, 20(3), 277-287. [https://doi.org/10.1177/002188638402000308]
  • Pan, Po-Lin., & Meng, J. (2016). Media frames across stages of health crisis: A crisis management approach to news coverage of flu pandemic. Journal of contingencies and crisis management, 24(2). [https://doi.org/10.1111/1468-5973.12105]
  • Park, J. H. (2020). A comparative study on the ‘Corona 19’ news frame based on ideological orientation of media. Korean Journal of Journalism & Communication Studies,64(4), 40-85. [https://doi.org/10.20879/kjjcs.2020.64.4.002]
  • Renn, O., Burns, W. J., Kasperson, J. X., Kasperson, R. E., & Slovic, P. (1992). The social amplification of risk: Theoretical foundations and empirical applications. Journal of Social Issues, 48(4), 137-160. [https://doi.org/10.1111/j.1540-4560.1992.tb01949.x]
  • Sell, T. K., Boddie, C., McGinty, E. E., Pollack, K, Smith, K. C. et al. (2017). Media messages and perception of risk for Ebola Virus Infection, United States. Emerging Infectious Diseases, 23(1), 108-111. [https://doi.org/10.3201/eid2301.160589]
  • Seymour-Ure, C. (1974). The Political Impact of Mass Media. London/Beverly Hills, CA: Constable/Sage.
  • Shim, H. S. (2013). Conservative frames VS. progressive frames of Korean Journalism: A comparative content analysis of the editorial on Korea-USA FTA issues on Chosun-Ilbo and Hankyoreh. Negotiation Research, 16(1), 37-66.
  • Song, H. R., & Cho, H. M. (2015). Study on the Characteristics of the domestic press’ disease-related risk reports: Focusing on the news reports of Ebola virus. Crisis and Emergency Management, 11(6), 45-68.
  • Sowell, T. (2007). A conflict of visions: Idealogical origins of political struggles. New York: Basis Books.
  • Spratt, M. (2001). Science, journalism, and the construction of news: How print media framed the 1918 influenza pandemic. American Journalism, 18(3), 61-79. [https://doi.org/10.1080/08821127.2001.10739324]
  • Sturges, D. L. (1994). Communicating through crisis: A strategy for organizational survival. Management Communication Quarterly, 7(3), 297-316. [https://doi.org/10.1177/0893318994007003004]
  • Tuchman, G. (1978). Making news: A study in the construction of reality.
  • Wahlberg, A., & Sjoberg, L. (2000). Risk perception and the media. Journal of Risk Research, 3(1), 31-50. [https://doi.org/10.1080/136698700376699]
  • Wasserman, S., & Faust, K. (1994). Structural analysis in the social sciences. Social network analysis: Methods and applications. Cambridge University Press. [https://doi.org/10.1017/CBO9780511815478]

Appendix

부록

  • 고영신 (2007). 정권의 성격변화와 언론보도-대통령 친인척 비리보도의 뉴스프레임을 중심으로. <커뮤니케이션이론>, 3권 1호, 156-196.
  • 김남순 (2020). 코로나바이러스감염증-19 현황과 과제. [전자매체본]. <보건복지 이슈 & 포커스>, 373호. 발간: 한국보건사회연구원.
  • 김여라 (2020). 감염병 보도 규제의 현황 및 개선 방안. [전자매체본]. <이슈와 논점>, 1665호. Retrieved 2/7/2021 from https://www.nars.go.kr/report/view.do?cmsCode=CM0018&brdSeq=27538
  • 김영욱 (2006). 위험사회와 위험 커뮤니케이션: 위험에 대한 성찰과 커뮤니케이션의 필요성. <커뮤니케이션 이론>, 2권 2호, 192-232.
  • 김용 (2016). 국내 미디어의 메르스 보도 고찰. <의료커뮤니케이션>, 11권 1호, 39-50.
  • 김춘식・김관규 (2015). 사이버 명예훼손에 대한 보수언론과 진보언론의 프레임 분석. <사회과학연구>, 22권 4호, 279-310.
  • 김태종 (2020). 뉴스 빅데이터를 활용한 코로나19 언론보도 분석: 토픽모델링 분석을 중심으로. <한국콘텐츠학회논문지>, 20권 5호, 457-466.
  • 권호천 (2016). 메르스 사태에 대한 신문보도의 의미연결망 분석: 조선일보와 한겨레신문 기사를 중심으로. <의료커뮤니케이션>, 11권 1호, 63-80.
  • 남인용・박한우 (2007). 대권 예비후보자 관련 신문기사의 네트워크 분석과 홍보전략. <한국정당학회보> 6권 1호, 79-107.
  • 박주현 (2020). 언론의 이념성향에 따른 ‘코로나19’ 보도 프레임 비교 연구. <한국언론학보>, 64권 4호, 40-85.
  • 송해룡・조항민 (2015). 국내언론의 질병관련 위험보도에 관한 특성연구: 에볼라 바이러스에 대한 방송뉴스보도 분석을 중심으로. <한국위기관리논집>, 11권 6호, 45-68.
  • 심흥식 (2013). 한국언론의 보수와 진보 프레임에 관한 분석적 고찰: 조선일보와 한겨레신문의 한미FTA 사설 분석. <협상연구>, 16권 1호, 37-66.
  • 이미나・홍주현 (2016). 메르스 확산에 따른 정부의 위기 대응 메시지 언어 네트워크 분석. <한국콘텐츠학회논문지>, 16권 5호, 124-136.
  • 이수상 (2014). 언어 네트워크 분석 방법을 활용한 학술논문의 내용분석. <정보관리학회지>, 31권 4호, 49-68.
  • 이진로・안병규 (2010). 신종플루 담론의 형성 구조: 조선일보와 한겨레신문 사설 분석. <헬스커뮤니케이션연구>, 2권 1호, 1-29,
  • 이혜미・김혜영・유승호 (2016). 국내 언론매체의 이념성향과 뉴스구성에 대한 연구: 미 대선 후보 ‘버니 샌더스’ 관련 보도의 의미연결망 분석을 중심으로. <한국콘텐츠학회논문지> 16권 8호, 180-191.
  • 전영옥 (2005). 발표담화와 발표요지 비교 연구. <텍스트언어학>, 19권, 209-246.
  • 조재희・조인호 (2019). 2018 메르스 해외 재유입에 대한 주요 온라인 이슈 탐색: 토픽모델링 분석과 감성 분석을 중심으로.<한국디지털콘텐츠학회 논문지>, 20권 5호, 1051-1060.
  • 진나영・정정주 (2018). 한국 메르스 사태에 대한 국내외 언론보도 의미망 비교연구. <언론과학연구>, 18권 2호, 222-262.
  • 한국리서치 (2020. 6. 3). 코로나19 8차 인식조사(상황인식, 공적 주체 신뢰도 등).
  • 홍주현・손영준 (2017). 사드 루머(THAAD rumor) 보도에 나타난 한국 언론의 정파성: 네트워크 분석과 프레임 분석을 중심으로. <한국언론정보학보>, 84권, 152-188.
  • 황성욱・이병혜 (2010). 저출산 이슈에 대한 언론의 현실 구성: 보수 대 진보신문의 프레임 비교 연구. <커뮤니케이션학 연구>, 18권 2호, 27-58.